Gentechnische Arbeiten in gentechnischen Anlagen

Band 7 der Schriftenreihe
Gentechnik für Umwelt- und Verbraucherschutz
Inhaltsverzeichnis

1 Einführung ... 7

2 Grundlage der Gentechnik und Gentechnikgesetzgebung 9

2.1 Die DNA als Trägerin der Erbinformationen... 9

2.2 Erste rekombinante DNA und erster gentechnisch veränderter Organismus ... 14

2.3 Von der ersten Asilomar Konferenz zum Gentechnikgesetz in Deutschland ... 15

3 Rechtsgrundlagen .. 19

3.1 Europäische Regelungen ... 19

3.1.1 EU-Richtlinie 2009/41/EG (Systemrichtlinie).. 19

3.2 Nationale Regelungen ... 20

3.2.1 Gentechnikgesetz (GenTG) ... 20

3.2.2 Gentechnik-Verfahrensverordnung (GenTVfV) 22

3.2.3 ZKBS-Verordnung (ZKBSV) ... 22

3.2.4 Gentechnik-Aufzeichnungsverordnung (GenTAufzV) 22

3.2.5 Gentechnik-Sicherheitsverordnung (GenTSV) ... 22

3.2.6 Gentechnik-Beteiligungsverordnung (GenTBetV) 23

3.2.7 Gentechnik-Pflanzenerzeugungsverordnung (GenTPfIEV) 23

3.2.8 Gentechnik-Anhörmversorgung (GenTAnhV) 23

3.2.9 Bundeskostenverordnung zum Gentechnikgesetz (BGenTGKostV). 23

3.2.10 Gentechnik-Notfallverordnung (GenTNotfV) ... 24

3.3 Bayerische Regelungen ... 24

3.3.1 Gentechnik-Zuständigkeitsverordnung (ZustVGenT) 24

3.4 Weitere (nicht gentechnikrechtliche) Regelungen .. 24

3.4.1 Biostoffverordnung (BioStoffV) .. 24

3.4.2 Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV) 25

4 Behörden und Institutionen .. 26

4.1 Bundesbehörden und -institutionen .. 26

4.1.1 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) .. 26

4.1.2 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 26
Gentechnische Arbeiten in gentechnischen Anlagen

4.1.3 Zentrale Kommission für die Biologische Sicherheit (ZKBS) 27
4.2 Gemeinsame Institutionen des Bundes und der Länder 28
4.2.1 Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG) 28
4.2.2 Ausschuss Recht der LAG (AR) ... 29
4.2.3 Ausschuss Methodenentwicklung der LAG (AM) 29
4.3 Behörden in Bayern ... 30
4.3.1 Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (StMUV) 30
4.3.2 Regierungen .. 30
4.3.3 Gewerbeaufsichtsämter .. 30
4.3.4 Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) .. 31
5 Gentechnische Arbeiten und gentechnische Anlagen 32
5.1 Gentechnische Arbeiten... 32
5.1.1 Risikobewertung von Organismen ... 33
5.1.1.1 Risikobewertung von Spender- und Empfängerorganismus 34
5.1.1.2 Betrachtung der zu übertragenden Nukleinsäureabschnitte 34
5.1.1.3 Betrachtung des Vektor-Empfänger-Systems .. 35
5.1.1.4 Risikobewertung des gentechnisch veränderten Organismus 35
5.1.1.5 Biologische Sicherheitsmaßnahmen .. 36
5.1.2 Zuordnung gentechnischer Arbeiten zu Sicherheitsstufen 37
5.1.3 Festlegung notwendiger Sicherheitsmaßnahmen 37
5.1.4 Datenbanken des BVL ... 38
5.1.4.1 Liste risikobewerteter Spender- und Empfängerorganismen (Organismenliste) .. 38
5.1.4.2 Zelllinienliste (Zelllinien-Datenbank) ... 41
5.1.4.3 Register der Escherichia-coli-Empfängerstämme für gentechnische Arbeiten ... 43
5.1.4.4 Onkogendatenbank ... 43
5.1.4.5 Vektorliste (Vektor-Datenbank) ... 44
5.1.5 Allgemeine Stellungnahmen der ZKBS .. 44
5.2 Gentechnische Anlagen .. 45
<table>
<thead>
<tr>
<th>5.2.1</th>
<th>Sicherheitsmaßnahmen in gentechnischen Anlagen</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2</td>
<td>Kennzeichnungsregelungen gentechnischer Anlagen</td>
<td>47</td>
</tr>
<tr>
<td>5.3</td>
<td>Gentechnische Arbeiten und Anlagen in Bayern</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Betreiber, Projektleiter und Beauftragte für die Biologische Sicherheit</td>
<td>50</td>
</tr>
<tr>
<td>6.1</td>
<td>Der Betreiber</td>
<td>50</td>
</tr>
<tr>
<td>6.2</td>
<td>Der Projektleiter</td>
<td>51</td>
</tr>
<tr>
<td>6.3</td>
<td>Der Beauftragte für die Biologische Sicherheit</td>
<td>51</td>
</tr>
<tr>
<td>6.4</td>
<td>Nachweis der Sachkunde gemäß §§ 15 und 17 GenTSV</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>Verwaltungsverfahren für gentechnische Anlagen und Arbeiten</td>
<td>54</td>
</tr>
<tr>
<td>7.1</td>
<td>Anzeigeverfahren</td>
<td>54</td>
</tr>
<tr>
<td>7.2</td>
<td>Anmeldevorfahren</td>
<td>55</td>
</tr>
<tr>
<td>7.3</td>
<td>Genehmigungsverfahren</td>
<td>55</td>
</tr>
<tr>
<td>7.4</td>
<td>Formblätter und zuständige Regierungen</td>
<td>58</td>
</tr>
<tr>
<td>7.5</td>
<td>Weitergehende Informationen über häufige Verwaltungsverfahren</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Häufig gestellte Fragen – Frequently asked questions (FAQ)</td>
<td>64</td>
</tr>
<tr>
<td>8.1</td>
<td>Was versteht man unter einem gentechnisch veränderten Organismus?</td>
<td>65</td>
</tr>
<tr>
<td>8.2</td>
<td>Welche Informationen beinhaltet die „Onkogen-Datenbank“ der ZKBS?</td>
<td>66</td>
</tr>
<tr>
<td>8.3</td>
<td>Was versteht man unter „S2 mit zusätzlichen Maßnahmen“?</td>
<td>67</td>
</tr>
<tr>
<td>8.4</td>
<td>Was versteht man unter einer wesentlichen Änderung und was ist dabei zu beachten?</td>
<td>69</td>
</tr>
<tr>
<td>8.5</td>
<td>Was ist der Unterschied zwischen Schutzstufe nach BioStoffV und Sicherheitsstufe nach GenTG?</td>
<td>70</td>
</tr>
<tr>
<td>8.6</td>
<td>Was ist bei der Risikobewertung von primären Vertebratenzellen zu beachten?</td>
<td>72</td>
</tr>
<tr>
<td>8.7</td>
<td>Warum ist es wichtig, Zellkulturen auf Kontamination mit Mykoplasmen zu testen?</td>
<td>74</td>
</tr>
<tr>
<td>8.8</td>
<td>Ist das Einbringen von mRNA in eukaryote Zellen eine gentechnische Arbeit?</td>
<td>75</td>
</tr>
<tr>
<td>8.9</td>
<td>Was ist bei gentechnischen Arbeiten mit Tat-Fusionsproteinen zu beachten?</td>
<td>76</td>
</tr>
<tr>
<td>8.10</td>
<td>Ist das Einbringen rekombinanter DNA in Tiere eine gentechnische Arbeit?</td>
<td>77</td>
</tr>
</tbody>
</table>
8.11 Ist die Verwendung der Zinkfinger-Nuklease-Technologie 1 (ZFN-1) eine gentechnische Arbeit? .. 79
8.12 Was versteht man unter „Synthetischer Biologie“? .. 80
Anhänge .. 83
Anhang 1: Kriterien für die Risikobewertung von Spender- und Empfängerorganismus gemäß Anhang I Nr. 1 GenTSV .. 83
Anhang 2: Kriterien für die Risikobewertung des gentechnisch veränderten Organismus gemäß Anhang I Nr. 2 GenTSV .. 84
Anhang 3: Zuordnung gentechnischer Arbeiten mit Mikroorganismen und Zellkulturen im Produktionsbereich zu Sicherheitsstufen gemäß § 7 GenTSV ... 85
Anhang 4: Zuordnung gentechnischer Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken zu Sicherheitsstufen gemäß § 7 GenTSV ... 86
Anhang 5: Zuordnung gentechnischer Arbeiten mit Tieren und Pflanzen zu Sicherheitsstufen gemäß § 7 GenTSV ... 87
Anhang 6: Sicherheitsmaßnahmen für den Laborbereich gemäß Anhang III Teil A GenTSV .. 88
Anhang 7: Sicherheitsmaßnahmen für den Produktionsbereich gemäß Anhang III Teil B GenTSV .. 91
Anhang 8: Sicherheitsmaßnahmen für Gewächshäuser gemäß Anhang IV GenTSV .. 94
Anhang 9: Sicherheitsmaßnahmen für Tierhaltungsräume gemäß Anhang V GenTSV .. 97
Verzeichnis der Abkürzungen .. 100
Links .. 104
Richtlinien, Gesetze und Verordnungen: .. 104
Behörden und Institutionen ... 105
Datenbanken .. 105
Literaturverzeichnis ... 106
Vorwort

Sehr geehrte Leserinnen und Leser,

gentechnische Verfahren spielen weltweit eine zunehmende Rolle in verschiedenen Bereichen, wie zum Beispiel der Optimierung industrieller Verfahren oder der Erforschung und Entwicklung neuer medizinischer oder pharmazeutischer Produkte. Die Anwendung der Gentechnik in der industriellen Produktion (Weiße Gentechnik) sowie der Medizin und Pharmazie (Rote Gentechnik) ist allgemein akzeptiert. Dagegen bestehen in der Bevölkerung erhebliche Vorbehalte gegen den Einsatz gentechnischer Verfahren in der Landwirtschaft (Grüne Gentechnik).

Dieser Leitfaden stellt die umfangreichen Rechtsnormen und Verwaltungs vorgänge dar, die bei Arbeiten in gentechnischen Anlagen zur Anwendung kommen. Er soll allen Beschäftigten, einschließlich den nach dem Gentechnikrecht verantwortlichen Wissenschaftlern (insbesondere Projektleitern und Beauftragten für die Biologische
Gentechnische Arbeiten in gentechnischen Anlagen

Ihr

Dr. Andreas Zapf
Präsident des Bayerischen Landesamtes für Gesundheit und Lebensmittelsicherheit
1 Einführung

Der Leitfaden „Gentechnische Arbeiten in gentechnischen Anlagen“ soll, die verschiedenen Aspekte der Anwendung gentechnisch veränderter Mikroorganismen in geschlossenen Systemen genauer beleuchten. Er soll dabei insbesondere allgemeinverständliche Einblicke in die Grundlagen und Geschichte der Gentechnik und Gentechnikgesetzgebung, die verbindlichen gentechnikrechtlichen Vorschriften, die Struktur und Organisation der Überwachungsbehörden sowie allgemeine Informationen über Art und Umfang der in Bayern durchgeführten gentechnischen Arbeiten vermitteln. Weiterhin werden die Aufgaben, Verantwortlichkeiten und Pflichten der Betreiber, Projektleiter und Beauftragten für die Biologische Sicherheit gentechnischer Anlagen beschrieben und die Verwaltungsverfahren für gentechnische Anlagen und Arbeiten dargestellt. Im letzten Kapitel dieses Leitfadens werden häufig gestellte, allgemeine sowie spezielle Fragen im Zusammenhang mit gentechnischen
Gentechnische Arbeiten in gentechnischen Anlagen

Arbeiten und gentechnischen Anlagen diskutiert. Links zu Richtlinien, Gesetzen, Verordnungen, Formblättern, Behörden und Institutionen sowie zu aktuellen Datenbanken finden sich im Anhang.

2 Grundlage der Gentechnik und Gentechnikgesetzgebung

2.1 Die DNA als Trägerin der Erbinformationen

Lange Zeit wurde der DNA keine nennenswerte biologische Bedeutung beigemessen und die strukturell komplexeren Proteine als wahrscheinlichere Trägerinnen der Erbinformationen favorisiert. Erst 75 Jahre nach ihrer Entdeckung konnte Oswald Avery 1944 mit einem bahnbrechenden Experiment beweisen, dass die DNA die Trägerin der Erbanlagen ist (Avery et al., 1944; Abbildung 2).

Im Jahre 1953 postulierten James Watson und Francis Crick ihr Doppelhelixmodell der DNA-Struktur, bei dem sich zwei DNA-Einzelstränge helixartig umeinander winden (Watson und Crick, 1953). Als Grundlage ihrer Modellentwicklung dienten von Rosalind Franklin und Maurice Wilkins aufgenommene Röntgenbeugungsbilder der DNA.

Es war auch Francis Crick, der 1958 das „Zentrale Dogma der Molekularbiologie“ als Hypothese verfasste, dem zufolge der Weg der genetischen Informationsweitergabe von der DNA über die RNA zum Protein verläuft (Crick, 1958).

Der genetische Code, die Regel, nach der immer drei aufeinander folgende Nukleotide der DNA bzw. RNA für eine bestimmte Aminosäure eines Proteins kodieren, wur-
Gentechnische Arbeiten in gentechnischen Anlagen
den 1966 vollständig entschlüsselt (Nirenberg et al., 1966). Er gilt dabei universell; das heißt, er ist bis auf wenige Ausnahmen bei allen Organismen identisch.

Die Werkzeuge der Gentechnik: E. coli, Plasmide, Ligasen und Restriktionsenzyme
Im Jahre 1885 entdeckte der aus Ansbach stammende Kinderarzt Theodor Escherich ein zahlenmäßig häufig auftretendes und zur obligaten Normalflora des

Restriktionsenzyme sind Enzyme, die DNA-Doppelstränge an spezifischen Stellen aufschneiden können. Sie sind Teil einer bakteriellen „Immunabwehr“ gegen Bakterien-befallende Viren, die Bakteriophagen. Die Bakterien besitzen dabei stets

Gentechnische Arbeiten in gentechnischen Anlagen

(methyliert), so dass nur eingedrungene Fremd-DNA durch die Aktivität der Restriktionsenzyme zerstört wird.
2.2 Erste rekombinante DNA und erster gentechnisch veränderter Organismus

2.3 Von der ersten Asilomar Konferenz zum Gentechnikgesetz in Deutschland

Auf Initiative Paul Bergs trafen sich im Januar 1973 verschiedene nordamerikanische Wissenschaftler im kalifornischen Asilomar, um die potenziellen Risiken des gentechnischen Arbeitens mit Tumorviren, insbesondere SV40, zu diskutieren. Auslöser dieser „ersten Asilomar Konferenz“ war das Vorhaben einer Mitarbeiterin Paul Bergs, die gesamte DNA von SV40 in E. coli einzuschleusen und die Befürchtung, ein Darmbakterium mit tumorigenen Eigenschaften zu erzeugen, welches beim Men-
Gentechnische Arbeiten in gentechnischen Anlagen

schen z. B. Darmkrebs auslösen könnte. Auf der Konferenz wurde u. a. über persönliche Schutzmaßnahmen im Umgang mit GVO und spezifische Maßnahmen zur Einschließung von GVO diskutiert, um unbeabsichtigte Freisetzungen in die Umwelt zu verhindern.

Der offene Brief der Berg-Kommission enthielt folgende Forderungen:

• Freiwilliges, weltweites Moratorium von Experimenten mit rekombinanter DNA,
• Einberufung einer internationalen Experten-Konferenz zur Diskussion des weiten Umgangs mit rekombinanter DNA,
• Einberufung einer Expertenkommission an den National Institutes of Health (NIH) zur Bewertung möglicher Sicherheitsrisiken beim Umgang mit rekombinanter DNA,
• Schaffung von Richtlinien für den Umgang mit rekombinanter DNA.

Im Februar 1975 fand eine internationale Experten-Konferenz im Rahmen der „Asilomar Konferenz über rekombinante DNA Moleküle“ statt. Auf ihr diskutierten sowohl Wissenschaftler, als auch Juristen und Journalisten aus 17 verschiedenen Staaten

Die Abbildung 5 stellt chronologisch die wichtigsten internationalen und nationalen Entwicklungen seit 1972 dar, die zur Entstehung des GenTG in Deutschland führten.
Gentechnische Arbeiten in gentechnischen Anlagen

3 Rechtsgrundlagen

3.1 Europäische Regelungen

3.1.1 EU-Richtlinie 2009/41/EG (Systemrichtlinie)

Das Gentechnikgesetz wird im Wesentlichen durch europarechtliche Regelungen geprägt. Für den Umgang mit GVO, insbesondere mit gentechnisch veränderten Mikroorganismen, in geschlossenen Systemen (Labor- und Tierhaltungsräume sowie Produktionsanlagen und Gewächshäuser) ist v. a. die so genannte „Systemrichtlinie“...

3.2 Nationale Regelungen

3.2.1 Gentechnikgesetz (GenTG)

1. unter Berücksichtigung ethischer Werte, Leben und Gesundheit von Menschen, die Umwelt in ihrem Wirkungsgefüge, Tiere, Pflanzen und Sachgüter vor schädlichen Auswirkungen gentechnischer Verfahren und Produkte zu schützen und Vorsorge gegen das Entstehen solcher Gefahren zu treffen,
2. die Möglichkeit zu gewährleisten, dass Produkte, insbesondere Lebens- und Futtermittel, konventionell, ökologisch oder unter Einsatz gentechnisch veränderter Organismen erzeugt und in den Verkehr gebracht werden können,
3. den rechtlichen Rahmen für die Erforschung, Entwicklung, Nutzung und Förderung der wissenschaftlichen, technischen und wirtschaftlichen Möglichkeiten der Gentechnik zu schaffen.

Das GenTG gilt für gentechnische Anlagen, gentechnische Arbeiten, die Freisetzung von GVO und das Inverkehrbringen von Produkten, die GVO enthalten oder aus solchen bestehen. Die direkte Anwendung von GVO am Menschen, z. B. im Bereich der Gentherapie, unterliegt nicht dem Regelungsbereich des Gesetzes. Das GenTG gliedert sich inhaltlich in verschiedene Teile. Der erste Teil (§§ 1–6) enthält dabei „allgemeine Vorschriften“, wie zum Beispiel den Zweck des Gesetzes, Anwendungsbereich, Begriffsbestimmungen, die Aufgaben der Zentralen Kommission für die Biologische Sicherheit (ZKBS) und Angaben zu allgemeinen Sorgfalt- und Aufzeich-
Gentechnische Arbeiten in gentechnischen Anlagen

Das GenTG wird durch eine Reihe von zusätzlichen Verordnungen (neun nationale und eine bayerische) ergänzt, welche einzelne Punkte des Gesetzes im Detail regeln (Abbildung 6).

3.2.2 Gentechnik-Verfahrensverordnung (GenTVfV)

3.2.3 ZKBS-Verordnung (ZKBSV)

In der „Verordnung über die Zentrale Kommission für die Biologische Sicherheit“ werden die Zusammensetzung, die Aufgaben und die Beschlussfassung der Zentralen Kommission für die Biologische Sicherheit (ZKBS) geregelt. Die ZKBS ist ein unabhängiges, nationales Gutachtergremium mittlerweile mit Sitz am Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) in Berlin. Die ZKBS prüft und bewertet sicherheitsrelevante Fragen im Zusammenhang mit gentechnischen Arbeiten, gibt hierzu Empfehlungen und berät die Bundesregierung und die Länder.

3.2.4 Gentechnik-Aufzeichnungsverordnung (GenTAufzV)

Die „Verordnung über Aufzeichnungen bei gentechnischen Arbeiten und bei Freisetzungen“ regelt die Dokumentationspflicht für gentechnische Arbeiten. Sie enthält Angaben zum Inhalt, zur Form und zur Aufbewahrungsfrist der Aufzeichnungen.

3.2.5 Gentechnik-Sicherheitsverordnung (GenTSV)

3.2.6 Gentechnik-Beteiligungsverordnung (GenTBetV)
Durch die „Verordnung über die Beteiligung des Rates, der Kommission und der Be-
hörden der Mitgliedstaaten der Europäischen Union und der anderen Vertragsstaa-
ten des Abkommens über den Europäischen Wirtschaftsraum im Verfahren zur Ge-
nehmigung von Freisetzungen und Inverkehrbringen sowie im Verfahren bei nach-
träglichen Maßnahmen nach dem Gentechnikgesetz“ wird die Zusammenarbeit zwi-
schen dem BVL und anderen europäischen Institutionen bzw. Behörden bei den Ver-
fahren zur Genehmigung von Freisetzungen und Inverkehrbringen von GVO gere-
gelt.

3.2.7 Gentechnik-Pflanzenerzeugungsverordnung (GenTPflEV)
Die „Verordnung über die gute fachliche Praxis bei der Erzeugung gentechnisch ver-
änderter Pflanzen“ enthält allgemeine und pflanzenspezifische Regeln der guten
fachlichen Praxis für den erwerbsmäßigen Anbau gentechnisch veränderter Pflan-
zen.

3.2.8 Gentechnik-Anhörungsverordnung (GenTAnhV)
Mit der „Verordnung über Anhörungsverfahren nach dem Gentechnikgesetz“ wird der
Verfahrensablauf öffentlicher Anhörungen im Rahmen bestimmter Genehmigungs-
verfahren geregelt (z. B. bei Freisetzungen oder der Errichtung gentechnischer Anla-
gen, in denen gentechnische Arbeiten der Sicherheitsstufen 3 oder 4 zu gewerblie-
chen Zwecken durchgeführt werden sollen oder bei Anlagen, für die ein Genehmigi-
gungsverfahren nach § 10 des Bundes-Immissionsschutzgesetzes erforderlich ist).

3.2.9 Bundeskostenverordnung zum Gentechnikgesetz (BGenTGKostV)
Die Verordnung regelt die Erhebung von Kosten für Amtshandlungen des Bundes-
amts für Verbraucherschutz und Lebensmittelsicherheit (BVL).
3.2.10 Gentechnik-Notfallverordnung (GenTNotfV)

In der „Verordnung über die Erstellung von außerbetrieblichen Notfallplänen und über Informations-, Melde- und Unterrichtungspflichten“ wird die Erstellung von außerbetrieblichen Notfallplänen bei bestimmten gentechnischen Arbeiten der Sicherheitsstufen 3 oder 4 geregelt. Ferner finden sich Vorgaben für die Informations-, Melde- und Unterrichtungspflichten bei Unfällen im Zusammenhang mit gentechnischen Arbeiten der Sicherheitsstufen 2, 3 oder 4 für die Betreiber gentechnischer Anlagen und die Behörden. Zusätzlich findet sich hier die Pflicht zuständiger Behörden zur Festlegung erforderlicher Maßnahmen im Falle eines Unfalls im Zusammenwirken mit dem Betreiber.

3.3 Bayerische Regelungen

3.3.1 Gentechnik-Zuständigkeitsverordnung (ZustVGenT)

Die „Verordnung über die Zuständigkeit zum Vollzug gentechnikrechtlicher Vorschriften“ regelt die behördlichen Zuständigkeiten zum Vollzug des Gentechnikrechts in Bayern.

3.4 Weitere (nicht gentechnikrechtliche) Regelungen

3.4.1 Biostoffverordnung (BioStoffV)

Die „Verordnung über Sicherheit und Gesundheitsschutz bei Tätigkeiten mit biologischen Arbeitsstoffen“ (Biostoffverordnung, BioStoffV) ist eine konkretisierende Verordnung zum Arbeitsschutzgesetz (Umsetzung der EU-Richtlinie 2000/54/EG; Arbeitnehmerschutzrichtlinie). Diese Verordnung gilt für Tätigkeiten mit biologischen Arbeitsstoffen (Biostoffen) einschließlich Tätigkeiten in deren Gefahrenbereich. Biostoffe sind in der BioStoffV definiert als Mikroorganismen, Zellkulturen und Endoparasiten einschließlich ihrer gentechnisch veränderten Formen, mit Transmissibler Spongioformer Enzephalopathie (TSE) assoziierte Agenzien, die den Menschen durch Infektionen, übertragbare Krankheiten, Toxinbildung, sensibilisierende oder
sonstige, die Gesundheit schädigende Wirkungen gefährden können. Den Biostoffen gleichgestellt sind Ektoparasiten, die beim Menschen eigenständige Erkrankungen verursachen oder sensibilisierende oder toxische Wirkungen hervorrufen können sowie technisch hergestellte biologische Einheiten mit neuen Eigenschaften, die den Menschen in gleicher Weise gefährden können wie Biostoffe.

Anmerkung: Im Falle der Verwendung von GVO (hier: gentechnisch veränderter Mikroorganismen) erfolgt die Festlegung der Risikogruppen, die Einstufung der Tätigkeiten mit den GVO sowie die Festlegung notwendiger Sicherheitsmaßnahmen nach den Vorgaben der GenTSV, da die BioStoffV keine Handlungsanweisungen zur Risikobewertung der GVO sowie zur Klassifizierung der Tätigkeiten mit den GVO gibt.

3.4.2 Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV)

4 Behörden und Institutionen

4.1 Bundesbehörden und -institutionen

4.1.1 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV)

Das BMELV ist für die Ausrichtung der deutschen Ernährungs-, Landwirtschafts- und Verbraucherpolitik verantwortlich. Im Rahmen seiner Zuständigkeiten im Bereich Gentechnik bereitet es z. B. das Gesetzgebungsverfahren des Gentechnikgesetzes und die damit zusammenhängenden Verordnungen vor und ist mitverantwortlich für die Berufung der Mitglieder der ZKBS (Abbildung 7).

4.1.2 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL)

4.1.3 Zentrale Kommission für die Biologische Sicherheit (ZKBS)

4.2 Gemeinsame Institutionen des Bundes und der Länder

4.2.1 Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG)

4.2.2 Ausschuss Recht der LAG (AR)

4.2.3 Ausschuss Methodenentwicklung der LAG (AM)

4.3 Behörden in Bayern

4.3.1 Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (StMUV)

Das StMUV ist oberste Aufsichtsbehörde für den Vollzug des Gentechnikgesetzes und der auf Grund dieses Gesetzes erlassenen Rechtsverordnungen. Es arbeitet mit den für den Vollzug zuständigen Regierungen (Oberbayern und Unterfranken) und dem Bayerischen Landesamt für Gesundheit und Lebensmittelsicherheit zusammen (Abbildung 7).

4.3.2 Regierungen

4.3.3 Gewerbeaufsichtsämter

Für den Schutz und die Sicherheit der Beschäftigten bei der Arbeit sind die Gewerbeaufsichtsämter an den Regierungen zuständig. Für die Technische Überwachung nach dem Gentechnikgesetz ist der Vollzug in Nord und Süd gebündelt: für das nördliche Bayern (Regierungsbezirke Unter-, Mittel- und Oberfranken sowie die Oberpfalz) ist das Gewerbeaufsichtsamt an der Regierung von Unterfranken, für das südliche Bayern (Regierungsbezirke Oberbayern, Niederbayern und Schwaben) das
Gentechnische Arbeiten in gentechnischen Anlagen

Gewerbeaufsichtsamt an der Regierung von Oberbayern zuständig (Abbildung 7). Für die sonstigen Arbeitsschutzvorschriften wie Genehmigung von Sonntagsarbeiten, Meldung von Schwangeren etc. ist das im jeweiligen Regierungsbezirk liegende Gewerbeaufsichtsamt zuständig.

4.3.4 Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL)

Das LGL ist nach der bayerischen Gentechnik-Zuständigkeitsverordnung (ZustVGenT) zuständig für die Entnahme und Untersuchung von Proben im Zusammenhang mit der Überwachung beim Vollzug des Gentechnikgesetzes.

Die Aufgaben des LGL bei der Überwachung von gentechnisch veränderten Lebensmitteln, Futtermitteln und Saatgut in Bayern sind in einem separaten Leitfaden zusammengefasst (Goerlich et al., 2011).

Im Rahmen der analytischen Überwachung gentechnischer Anlagen und Arbeiten liegen die Untersuchungsschwerpunkte des LGL u. a. in den Bereichen Sicherheit und Hygiene am Arbeitsplatz, Integrität der Einschließungsmaßnahmen (Containment) und Konformität der gentechnischen Arbeiten mit Zulassungsbescheiden. Darüber hinaus ist das LGL im Ausschuss Methodenentwicklung (AM) der Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG) und in der Arbeitsgruppe des Bundesamts für Verbraucherschutz und Lebensmittelsicherheit (BVL), die für die amtliche Methoden-
sammelung gemäß § 28b GenTG zuständig ist, vertreten. Das LGL entwickelt und va-
\[\text{lidiert in diesem Rahmen die für die amtliche Überwachung gentechnischer Anlagen}
\[\text{und Arbeiten erforderlichen Nachweisverfahren (Abbildung 7).}

5 Gentechnische Arbeiten und gentechnische Anlagen

5.1 Gentechnische Arbeiten

Unter gentechnischen Arbeiten im Sinne des GenTG versteht man die Erzeugung
von GVO, die Vermehrung, Lagerung, Zerstörung oder Entsorgung sowie den inner-
betrieblichen Transport von GVO und deren Verwendung in anderer Weise. Nach ih-
rem Gefährdungspotenzial werden gentechnische Arbeiten in vier Sicherheitsstufen
eingeteilt:

- Sicherheitsstufe 1 (S1): kein Risiko
- Sicherheitsstufe 2 (S2): geringes Risiko
- Sicherheitsstufe 3 (S3): mäßiges Risiko
- Sicherheitsstufe 4 (S4): hohes Risiko

für die menschliche Gesundheit und / oder die Umwelt

Gemäß § 4 GenTSV erfolgt die Risikobewertung und die Zuordnung gentechnischer
Arbeiten zu den Sicherheitsstufen unter Berücksichtigung der Risikobewertung der
Organismen und der vorgesehenen biologischen Sicherheitsmaßnahmen auf der
Grundlage der Gesamtbewertung folgender Punkte:

1. Feststellung aller für die Sicherheit bedeutsamen Eigenschaften
 a) des Empfänger- oder Ausgangsorganismus
 b) des inserierten genetischen Materials (aus dem Spenderorganismus)
 c) des Vektors (soweit verwendet)
 d) des Spenderorganismus (sofern dieser während der Arbeiten verwendet
 wird)
 e) des aus der Tätigkeit hervorgehenden GVO

2. Merkmale der Tätigkeit
3. Schwere und Wahrscheinlichkeit einer Gefährdung für die in § 1 Nr. 1 GenTG genannten Rechtsgüter.

5.1.1 Risikobewertung von Organismen

Die Risikobewertung von Organismen bei gentechnischen Arbeiten beinhaltet verschiedene Aspekte, insbesondere die Risikobewertung von Spender- und Empfängerorganismen, die Betrachtung der zu übertragenden Nukleinsäure, gegebenenfalls die Betrachtung des Vektors (bzw. des Vektor-Empfänger-Systems), die Risikobewertung des GVO sowie das Einbeziehen anerkannter biologischer Sicherheitsmaßnahmen bei Vektoren und Empfängerorganismen (Abbildung 8).

5.1.1.1 Risikobewertung von Spender- und Empfängerorganismus

5.1.1.2 Betrachtung der zu übertragenden Nukleinsäureabschnitte

Hinsichtlich der zu übertragenden Nukleinsäureabschnitte macht der Gesetzgeber folgende Vorgaben (§ 5 Abs. 3 und 3a GenTSV):

- Werden Nukleinsäureabschnitte, die für das Gefährdungspotenzial des Spenderorganismus maßgeblich sind, übertragen oder kann deren Übertragung nicht vollständig ausgeschlossen werden, muss das Gefährdungspotenzial des Spenders vollständig in die Risikobewertung einbezogen werden.
Sollen andere Nukleinsäureabschnitte überführt werden, kann deren Gefährdungspotenzial niedriger (z. B. gut charakterisierte Nukleinsäureabschnitte und Genprodukte) oder höher (z. B. Sequenzen, die für hochwirksame Toxine kodieren; rekombinante Genprodukte mit neuen Eigenschaften, die eine Gefährdung für die Rechtsgüter darstellen) als das des Spendners bewertet werden.

Bei bestimmten gentechnischen Arbeiten mit Onkogenen sind zusätzliche Sicherheitsmaßnahmen notwendig. Diese sind ggf. in der „Onkogen-Datenbank“ der ZKBS bei den entsprechenden Genen und Arbeiten vermerkt (siehe Kapitel 5.1.4.4.). Es sei an dieser Stelle darauf hingewiesen, dass die ZKBS verschiedene allgemeine Stellungnahmen zum Umgang mit funktionellen Nukleinsäuren verfasst hat (siehe Kapitel 5.1.5.).

5.1.1.3 Betrachtung des Vektor-Empfänger-Systems
Gelangen Vektoren zur Anwendung, ist eine Gesamtbewertung des Vektor-Empfänger-Systems vorzunehmen (§ 5 Abs. 4 Satz 2 GenTSV). Stellt das verwendete Vektor-Empfängersystem eine anerkannte biologische Sicherheitsmaßnahme nach § 6 GenTSV dar, so kann das Gefährdungspotenzial des GVO niedriger bewertet werden (§ 5 Abs. 5 GenTSV). Informationen über häufig verwendete Vektoren finden sich in der „Vektorliste“ bzw. „Vektor-Datenbank“ der ZKBS (siehe Kapitel 5.1.4.5.). Dem Anwender stehen als Hilfsmittel weiterhin auch verschiedene allgemeine Stellungnahmen der ZKBS zur Bewertung von Vektoren bei gentechnischen Arbeiten zur Verfügung (siehe Kapitel 5.1.5.).

5.1.1.4 Risikobewertung des gentechnisch veränderten Organismus
Gentechnische Arbeiten in gentechnischen Anlagen

(§ 5 Abs. 5 GenTSV). Spezifische Informationen über die Bewertung von GVO finden sich in zahlreichen allgemeinen Stellungnahmen der ZKBS (siehe Kapitel 5.1.5.).

5.1.1.5 Biologische Sicherheitsmaßnahmen

Biologische Sicherheitsmaßnahmen bei Empfängerorganismen:
Die Verwendung eines Empfängerorganismus kann unter folgenden Voraussetzungen als Teil einer biologischen Sicherheitsmaßnahme anerkannt werden:

1. Vorliegen einer wissenschaftlichen Beschreibung und taxonomischen Einordnung,
2. Vermehrung nur unter Bedingungen, die außerhalb gentechnischer Anlagen selten oder nicht angetroffen werden, oder Möglichkeit, die Ausbreitung außerhalb gentechnischer Anlagen durch geeignete Maßnahmen unter Kontrolle zu halten,
3. keine bei Menschen, Tieren oder Pflanzen Krankheiten hervorrufenden und keine umweltgefährdenden Eigenschaften,
4. geringer horizontaler Genaustausch mit anderen Spezies.

Biologische Sicherheitsmaßnahmen bei Vektoren:
Die Verwendung eines Vektors kann unter folgenden Voraussetzungen als Teil einer biologischen Sicherheitsmaßnahme anerkannt werden:

1. ausreichende Charakterisierung des Genoms des Vektors,
2. Vorliegen einer begrenzten Wirtsspezifität und
3. speziell bei Bakterien oder Pilzen kein eigenes Transfersystem, geringe Cotransfer-Rate und geringe Mobilisierbarkeit oder
4. bei einem Vektor für eukaryote Zellen auf viraler Basis: keine eigenständige Infektiosität und geringer Transfer durch endogene Helferviren.
Biologische Sicherheitsmaßnahmen bei Pflanzen und Tieren:

5.1.2 Zuordnung gentechnischer Arbeiten zu Sicherheitsstufen
Entsprechend ihrem Gefährdungspotenzial werden gentechnische Arbeiten, unter Beachtung des Standes der Wissenschaft, in die Sicherheitsstufen 1 bis 4 eingeordnet. Der § 7 GenTSV unterscheidet dabei zwischen gentechnischen Arbeiten mit Mikroorganismen und Zellkulturen im Produktionsbereich (siehe Anhang 3 dieses Leitfadens), gentechnischen Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken (siehe Anhang 4 dieses Leitfadens) und gentechnischen Arbeiten mit Tieren und Pflanzen (siehe Anhang 5 dieses Leitfadens). Bei der Sicherheitseinstufung ist die Anwendung biologischer Sicherheitsmaßnahmen zu berücksichtigen.

5.1.3 Festlegung notwendiger Sicherheitsmaßnahmen
Für jede Sicherheitsstufe sind in den §§ 8 bis 13 sowie den Anhängen der GenTSV Sicherheitsmaßnahmen bestimmt. Diese Maßnahmen stellen dabei die Anforderungen für den Regelfall dar und enthalten keine abschließende Aufzählung. Im Einzelfall kann es im Hinblick auf die besonderen sicherheitsrelevanten Umstände einer gentechnischen Arbeit erforderlich sein, zum Schutz der Rechtsgüter nach § 1 Nr. 1 GenTG bestimmte zusätzliche Sicherheitsmaßnahmen festzulegen (siehe hierzu Kapitel 8.3). Von bestimmten Sicherheitsmaßnahmen kann aber auch abgesehen werden, wenn der Schutz der Rechtsgüter auch ohne diese Maßnahmen gewährleistet ist. Listen über technische und organisatorische Sicherheitsmaßnahmen, die für
gentechnische Arbeiten der Sicherheitsstufen 1 bis 4 üblicherweise vorgeschrieben sind, finden sich in Anhang 6 dieses Leitfadens (für den Laborbereich), Anhang 7 dieses Leitfadens (für den Produktionsbereich), Anhang 8 dieses Leitfadens (für Gewächshäuser) und Anhang 9 dieses Leitfadens (für Tierhaltungsräume).

5.1.4 Datenbanken des BVL

5.1.4.1 Liste risikobewerteter Spender- und Empfängerorganismen (Organismenliste)

Anmerkung: Bei einem Teil der risikobewerteten Spender- und Empfängerorganismen für gentechnische Arbeiten erfolgte die Einstufung gemäß Arbeitnehmerschutzrichtlinie 2000/54/EG (Richtlinie 2000/54/EG über den Schutz der Arbeitnehmer gegen Gefährdung durch biologische Arbeitsstoffe bei der Arbeit) vom 18. September 2000 (Tabelle 1). Diese Richtlinie definiert die biologischen Arbeitsstoffe dabei in die fünf Gruppen: 1, 2, 3, 3** und 4 wie folgt:

- biologische Arbeitsstoffe der Gruppe 1 sind Stoffe, bei denen es unwahrscheinlich ist, dass sie beim Menschen eine Krankheit verursachen.
- biologische Arbeitsstoffe der Gruppe 2 sind Stoffe, die eine Krankheit beim Menschen hervorrufen können und eine Gefahr für Arbeitnehmer darstellen könnten; eine Verbreitung des Stoffes in der Bevölkerung ist unwahrscheinlich; eine wirksame Vorbeugung oder Behandlung ist normalerweise möglich.
- biologische Arbeitsstoffe der Gruppe 3 sind Stoffe, die eine schwere Krankheit beim Menschen hervorrufen und eine ernste Gefahr für Arbeitnehmer darstellen können; die Gefahr einer Verbreitung in der Bevölkerung kann bestehen, doch ist normalerweise eine wirksame Vorbeugung oder Behandlung möglich.
• bei bestimmten biologischen Arbeitsstoffen, die in die Gruppe 3 eingestuft und in der Liste mit zwei Sternchen (**) versehen wurden, ist das Infektionsrisiko für Arbeitnehmer begrenzt, da eine Infektion über den Luftweg normalerweise nicht erfolgen kann.

• biologische Arbeitsstoffe der Gruppe 4 sind Stoffe, die eine schwere Krankheit beim Menschen hervorrufen und eine ernste Gefahr für Arbeitnehmer darstellen; die Gefahr einer Verbreitung in der Bevölkerung ist unter Umständen groß; normalerweise ist eine wirksame Vorbeugung oder Behandlung nicht möglich.

Sind die für eine geplante Arbeit vorgesehenen Organismen nicht in der Organismenliste enthalten, müssen sie anhand der in Anhang I Nr. 1 GenTSV dargelegten Kriterien eingestuft werden.
Gentechnische Arbeiten in gentechnischen Anlagen

Tabelle 1. Beispiele für risikobewertete Organismen. Diese Tabelle nennt einige Beispiele für risikobewertete Organismen gemäß Organismenliste der ZKBS.

| Risikogruppe 1 | - *Escherichia coli* K12
| | - *Agrobacterium tumefaciens*
| | - Hepatitis G Virus (HGV)
| | - Modifiziertes Vaccinia-Virus Ankara (MVA)
| | - Tabakmosaikvirus (TMV)
| Risikogruppe 2 | - Herpes-simplex-Virus (HSV)
| | - Varizella-Zoster Virus (VZV)
| | - Hepatitis B Virus (HBV)
| | - *Yersinia* spp. (außer *Yersinia pestis*)
| | - *Escherichia coli* (enteroinvasive, enteropathogene, uropathogene Stämme)
| Risikogruppe 3**| - enterohämorrhagische *Escherichia coli* (EHEC)
| | - *Salmonella typhii*
| | - Humanes T-Zell-Leukämie-Virus (HTLV)
| | - Humanes Immundefizienzvirus (HIV)
| | - Hepatitis C Virus (HCV)
| Risikogruppe 3 | - *Yersinia pestis*
| | - *Bacillus anthracis*
| | - Japanisches Enzephalitis Virus (JEV)
| | - Denguevirus (DENV)
| | - Gelbfiebervirus (GFV)
| Risikogruppe 4 | - Marburgvirus
| | - Ebolavirus
| | - Maul- und Klauenseuche-Virus (MKSV)
| | - Krim-Kongo-Hämorrhagisches-Fieber Virus
| | - Variolavirus

40 Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit
5.1.4.2 Zelllinienliste (Zelllinien-Datenbank)

Anmerkung: Einige etablierte Zelllinien können immer oder unter gewissen Umständen Organismen (meist Viren) einer höheren Risikogruppe abgeben. Ist dies der Fall, so werden diese Zelllinien in die Risikogruppe des abgegebenen Virus eingestuft. In Tabelle 2 und Tabelle 3 sind Zelllinien aufgeführt, die in die Risikogruppe 2 (Tabelle 2) bzw. die Risikogruppe 3** (Tabelle 3) eingestuft wurden.

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Risikogruppe</th>
<th>Herkunft</th>
<th>Gewebe</th>
<th>Abgegebenes Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>22Rv1</td>
<td>2</td>
<td>Maus</td>
<td>Prostatakarzinom</td>
<td>XMRV</td>
</tr>
<tr>
<td>3A(tPA-30-1)</td>
<td>2</td>
<td>Mensch</td>
<td>Plazenta</td>
<td>SV40</td>
</tr>
<tr>
<td>721.220</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>721.220-B4402</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>721.220-B4405</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>8E5</td>
<td>2</td>
<td>Mensch</td>
<td>T-Zelle</td>
<td>defektes HIV-1</td>
</tr>
<tr>
<td>AGS</td>
<td>2</td>
<td>Mensch</td>
<td>Adenokarzinom</td>
<td>PIV5</td>
</tr>
<tr>
<td>B-3</td>
<td>2</td>
<td>Mensch</td>
<td>Linsenepithel</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>B-LCL</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>B95-8</td>
<td>2</td>
<td>Affe</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>B95a</td>
<td>2</td>
<td>Affe</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>BEAS-2B</td>
<td>2</td>
<td>Mensch</td>
<td>Bronchialepithel</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>Bos2</td>
<td>2</td>
<td>Maus</td>
<td>Neuroblasten</td>
<td>Scrapie-infiziert</td>
</tr>
<tr>
<td>C1R-neo</td>
<td>2</td>
<td>Mensch</td>
<td>B-Lymphoblast</td>
<td>EBV</td>
</tr>
<tr>
<td>C8166</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphozyt</td>
<td>defektes HTLV-1</td>
</tr>
<tr>
<td>C8166-SEAP</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphozyt</td>
<td>defektes HTLV-1</td>
</tr>
<tr>
<td>Zelllinie</td>
<td>Risikogruppe</td>
<td>Herkunft</td>
<td>Gewebe</td>
<td>Abgegebenes Virus</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>CMMT</td>
<td>2</td>
<td>Affe</td>
<td>Mammatumor</td>
<td>Mason-Pfizer Affenvirus</td>
</tr>
<tr>
<td>Daudi</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>EHEB</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>EKVX</td>
<td>2</td>
<td>Mensch</td>
<td>Lungenkarzinom</td>
<td>XMRV</td>
</tr>
<tr>
<td>Granta 519</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>HCE-T (Kahn)</td>
<td>2</td>
<td>Mensch</td>
<td>Cornea</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>Hep G2-2.2.15</td>
<td>2</td>
<td>Mensch</td>
<td>Hepatozyt</td>
<td>HBV</td>
</tr>
<tr>
<td>Hep G2-4A5</td>
<td>2</td>
<td>Mensch</td>
<td>Leber</td>
<td>HBV</td>
</tr>
<tr>
<td>HKB 11</td>
<td>2</td>
<td>Mensch</td>
<td>Niere</td>
<td>Adenovirus/EBV</td>
</tr>
<tr>
<td>HKC-8</td>
<td>2</td>
<td>Mensch</td>
<td>Niere</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>IB3-1</td>
<td>2</td>
<td>Mensch</td>
<td>Bronchialepithel</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>JVM-2 / JVM-3</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>LCL-721</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphozyt</td>
<td>EBV</td>
</tr>
<tr>
<td>LCL-721.174</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphozyt</td>
<td>EBV</td>
</tr>
<tr>
<td>LCL-WEI</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>LR-7</td>
<td>2</td>
<td>Maus</td>
<td>Fibroblast</td>
<td>Mam. Orthoreovirus 3</td>
</tr>
<tr>
<td>MEC-1 / MEC-2</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>MM221-92;221</td>
<td>2</td>
<td>Affe</td>
<td>T-Zelle</td>
<td>HVS</td>
</tr>
<tr>
<td>NPrTr</td>
<td>2</td>
<td>Schwein</td>
<td>Trachea</td>
<td>PERV</td>
</tr>
<tr>
<td>P3HR-1</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>P493-6</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zell-Lymphom</td>
<td>EBV</td>
</tr>
<tr>
<td>PLC/PRF/5</td>
<td>2</td>
<td>Mensch</td>
<td>Hepatozyt</td>
<td>HBV</td>
</tr>
<tr>
<td>RAW 264.7</td>
<td>2</td>
<td>Maus</td>
<td>Makrophage</td>
<td>Polytropes murines Retrovirus</td>
</tr>
<tr>
<td>S9</td>
<td>2</td>
<td>Mensch</td>
<td>Bronchialepithel</td>
<td>Ad12/SV40 Hybridvirus</td>
</tr>
<tr>
<td>ScGT1</td>
<td>2</td>
<td>Maus</td>
<td>Neuroblast</td>
<td>Scrapie-infiziert</td>
</tr>
<tr>
<td>ScN2a</td>
<td>2</td>
<td>Maus</td>
<td>Neuroblast</td>
<td>Scrapie-infiziert</td>
</tr>
<tr>
<td>SINCC</td>
<td>2</td>
<td>Maus</td>
<td>Neuroblast</td>
<td>Scrapie-infiziert</td>
</tr>
<tr>
<td>sMAGI</td>
<td>2</td>
<td>Affe</td>
<td>Mammatumor</td>
<td>Mason-Pfizer Affenvirus</td>
</tr>
<tr>
<td>VCaP</td>
<td>2</td>
<td>Mensch</td>
<td>Prostatakarzinom</td>
<td>Bxv-1</td>
</tr>
<tr>
<td>WIL2-S</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>WT100BIS2</td>
<td>2</td>
<td>Mensch</td>
<td>B-Lymphoblast</td>
<td>EBV</td>
</tr>
<tr>
<td>WT49</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphoblast</td>
<td>EBV</td>
</tr>
<tr>
<td>WTS1</td>
<td>2</td>
<td>Mensch</td>
<td>B-Zelle</td>
<td>EBV</td>
</tr>
<tr>
<td>YT 2</td>
<td>2</td>
<td>Mensch</td>
<td>Lymphom</td>
<td>EBV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Risikogruppe</th>
<th>Herkunft</th>
<th>Gewebe</th>
<th>Abgegebenes Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-1</td>
<td>3**</td>
<td>Mensch</td>
<td>Hepatom</td>
<td>HCV</td>
</tr>
<tr>
<td>21-5</td>
<td>3**</td>
<td>Mensch</td>
<td>Hepatom</td>
<td>HCV</td>
</tr>
<tr>
<td>ACH-2</td>
<td>3**</td>
<td>Mensch</td>
<td>T-Zelle</td>
<td>HIV-1</td>
</tr>
<tr>
<td>J-Lat 10.6</td>
<td>3**</td>
<td>Mensch</td>
<td>T-Zelle</td>
<td>HIV-1</td>
</tr>
<tr>
<td>J-Lat 6.3</td>
<td>3**</td>
<td>Mensch</td>
<td>T-Zelle</td>
<td>HIV-1</td>
</tr>
<tr>
<td>MT-2</td>
<td>3**</td>
<td>Mensch</td>
<td>Lymphoblast</td>
<td>HTLV-1</td>
</tr>
<tr>
<td>MT-4</td>
<td>3**</td>
<td>Mensch</td>
<td>Lymphoblast</td>
<td>HTLV-1</td>
</tr>
<tr>
<td>MT-4puroFF3</td>
<td>3**</td>
<td>Mensch</td>
<td>Lymphoblast</td>
<td>HTLV-1</td>
</tr>
<tr>
<td>Vero LB-pi</td>
<td>3**</td>
<td>Affe</td>
<td>Niere</td>
<td>HCV</td>
</tr>
</tbody>
</table>

5.1.4.3 Register der *Escherichia coli*-Empfängerstämmе für gentechnische Arbeiten

In dem „Register der *Escherichia coli*-Empfängerstämmе für gentechnische Arbeiten“ finden sich Informationen über häufig als Empfängerorganismen für gentechnische Arbeiten verwendete *E. coli*-Stämme. Diese Informationen betreffen die Einstufung in eine Risikogruppe, eine Stammbeschreibung und Informationen darüber, ob diese Empfängerstämmе als Teil einer biologischen Sicherheitsmaßnahme anerkannt werden. Das Register findet sich auf der Internetseite des BVL unter der Rubrik „Zentrale Kommission für die Biologische Sicherheit“.

5.1.4.4 Onkogendatenbank

In der „Onkogendatenbank“ sind zelluläre und virale Gene (Nukleinsäuren) gelistet, die bereits von der ZKBS bzw. deren Geschäftsstelle hinsichtlich eines onkogenen Potenzials bewertet wurden. Die Datenbank ist insbesondere deshalb wichtig, weil die Kenntnis von Onkogenen bei der Risikobewertung des GVO zu berücksichtigen ist und weil bei bestimmten gentechnischen Arbeiten mit Onkogenen zusätzliche Sicherheitsmaßnahmen notwendig sind. Diese sind ggf. in der Onkogendatenbank bei den entsprechenden Genen und Arbeiten vermerkt. Die Datenbank wird ständig ergänzt bzw. aktualisiert und findet sich auf der Internetseite des BVL unter der Rubrik „Zentrale Kommission für die Biologische Sicherheit“.
5.1.4.5 Vektorliste (Vektor-Datenbank)

5.1.5 Allgemeine Stellungnahmen der ZKBS
Zu häufig gestellten sicherheitsrelevanten Fragen bei gentechnischen Arbeiten, verabschiedet die ZKBS allgemeine Stellungnahmen. Diese stellen wichtige Hilfsmittel für den Anwender dar. Sie betreffen insbesondere die Risikobewertung von Organismen, die Sicherheitseinstufung gentechnischer Arbeiten oder die Bewertung sicherheitstechnischer Maßnahmen und werden auf der Internetseite des BVL unter der Rubrik „Zentrale Kommission für die Biologische Sicherheit“ veröffentlicht. Die allgemeinen Stellungnahmen sind in folgende Gruppen aufgeteilt:

- Allgemeine Themen
- Bakterien
- Parasiten
- Pflanzen
- Pilze
- Sicherheitsmaßnahmen
- Tiere
- Vektoren
- Viren
- Zellbiologie
- Vergleichbarkeit
5.2 Gentechnische Anlagen

5.2.1 Sicherheitsmaßnahmen in gentechnischen Anlagen

Bezogen auf gentechnische Anlagen unterscheidet die Gentechnik-Sicherheitsverordnung (GenTSV) zwischen technischen und organisatorischen Sicherheitsmaßnahmen sowie Arbeitssicherheitsmaßnahmen.

Technische Sicherheitsmaßnahmen:
Hierzu gehören technische und bauliche Maßnahmen, die ein unbeabsichtigtes Freiwerden der GVO begrenzen oder verhindern und das Personal vor möglichen von GVO ausgehenden Gefahren schützen, wie zum Beispiel:

- Raumlufthochsten Anlagen (Unterdruck / Abluftfiltration)
- Ein- und Ausschleusen von Material
- Abfall- und Abwasserentsorgung
- Bauliche Konzeption eines geschlossenen Systems
- Sicherheitswerkbänke
- Aerosoldichte Gerätschaften (Zentrifugations-, Fermentationssysteme)
- Geeignete Schutzausrüstung
Organisatorische Sicherheitsmaßnahmen:
Hierunter fallen alle organisatorischen Maßnahmen, die den ordnungsgemäßen Betrieb der gentechnischen Anlage sicherstellen sowie alle Maßnahmen bei Störungen und Unfällen, wie zum Beispiel:
- Aufzeichnung der gentechnischen Arbeiten
- Kennzeichnung der Arbeitsbereiche
- Zutrittsbeschränkung
- Notfallpläne
- Regelungen zum Verhalten im Brandfall

Arbeitssicherheitsmaßnahmen:
Maßnahmen der Hygiene und des medizinischen Schutzes der Beschäftigten, wie zum Beispiel:
- Grundregeln guter mikrobiologischer Praxis
- Persönliche Schutzausrüstung (PSA)
- Hygieneplan / Hautschutzplan
- Arbeitsmedizinische Vorsorge
- Regelmäßige Einweisung und Unterweisung der Beschäftigten (einschließlich des Wartungs- und Reinigungspersonals)
- Betriebsanweisungen

Detaillierte Angaben über Sicherheitsmaßnahmen, die für gentechnische Anlagen vorgeschrieben sind, in denen gentechnische Arbeiten der Sicherheitsstufen 1, 2, 3 bzw. 4 durchgeführt werden, finden sich in der Gentechnik-Sicherheitsverordnung (GenTSV), insbesondere den Anhängen III A (für Laborbereiche), III B (für Produktionsbereiche), IV (für Gewächshäuser) und V (für Tierhaltungsräume). Dadurch werden tätigkeitsspezifische Einschließungs- und andere Schutzmaßnahmen der Richtlinie 2009/41/EG (Systemrichtlinie) umgesetzt, hier insbesondere Anhang IV. Es ist anzumerken, dass der in der Systemrichtlinie verwendete Begriff „Einschließungsstufe“ dem in der GenTSV verwendeten Begriff der „Sicherheitsstufe“ entspricht.

5.2.2 Kennzeichnungsregelungen gentechnischer Anlagen

Kennzeichnung nach der Sicherheitsstufe der durchgeführten gentechnischen Arbeit:
Arbeitsbereiche in gentechnischen Anlagen sind gemäß der in Anhang III. A Nr. 1 GenTSV genannten Vorgaben als solche und entsprechend der Sicherheitsstufe der darin durchgeführten gentechnischen Arbeiten zu kennzeichnen. Die Kennzeichnung hat dabei gut sichtbar am Zugang des Arbeitsbereichs (zum Beispiel auf einem Türschild in Augenhöhe) angebracht zu sein. Der Text der Kennzeichnung sollte dabei z. B. den Begriff „Gentechnik“ oder „gentechnische Arbeiten“ und die Sicherheitsstufe der gentechnischen Arbeiten (S1, S2, S3 oder S4) enthalten. Dadurch soll der Unterschied zu Tätigkeiten mit Biostoffen (Wildtyp-Organismen) sichtbar gemacht werden (Abbildung 9, zweite Spalte).

Warnzeichen „Biogefährdung“ (Biohazard):

Anmerkung: Gemäß § 10 BioStoffV sind Schutzstufenbereiche in Laboratorien, in der Versuchstierhaltung und in der Biotechnologie, in denen Tätigkeiten der Schutzstufe 2, 3 oder 4 durchgeführt werden, mit dem Warnzeichen „Biogefährdung“ (Biohazard) zu kennzeichnen.
Brandschutzzeichen:
Entsprechend landesrechtlichen Regelungen zum Brandschutz veranlasst die Feuerwehr die Kennzeichnung gentechnischer Anlagen, in denen gentechnische Arbeiten der Sicherheitsstufen 1 bis 4 (S1 - S4) durchgeführt werden. Die Kennzeichnungen sind deutlich sichtbar und dauerhaft gemäß DIN 4066 bzw. FwDV 500 mit dem Zeichen BIO I (S1), BIO II (S2) oder BIO III (S3 und S4) vorzunehmen. Die Zeichen müssen tastbar sein und in Form rot umrandeter Metallprägeschilder angebracht werden (Abbildung 9, vierte Spalte).

Da sich die Sicherheitsstufe der in einer bestimmten gentechnischen Anlage durchgeführten gentechnischen Arbeiten von der Gefahrengruppe der in derselben Anlage durchgeführten Tätigkeiten mit B-Gefahrstoffen unterscheiden kann, sind neben den in Abbildung 9 dargestellten Beispielen auch weitere Kombinationen der Beschilderungen denkbar, wie zum Beispiel „Gentechnik S1“ und „BIO II“.

Zutrittsbeschränkung:
Gemäß Anhang III GenTSV ist bei gentechnischen Arbeiten ab der Sicherheitsstufe 2 der Zutritt zum Labor zu beschränken. Zutritt haben außer den an den Experimen-

<table>
<thead>
<tr>
<th>Sicherheitsstufe</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>BIO I</td>
</tr>
<tr>
<td>Gentechnik S1</td>
<td>Arbeitsbereich</td>
</tr>
<tr>
<td>S2</td>
<td>BIO II</td>
</tr>
<tr>
<td>Gentechnik S2</td>
<td>Arbeitsbereich</td>
</tr>
<tr>
<td>S3</td>
<td>BIO III</td>
</tr>
<tr>
<td>Gentechnik S3</td>
<td>Arbeitsbereich</td>
</tr>
</tbody>
</table>

5.3 Gentechnische Arbeiten und Anlagen in Bayern

Gentechnische Arbeiten in gentechnischen Anlagen

6 Betreiber, Projektleiter und Beauftragte für
die Biologische Sicherheit

6.1 Der Betreiber

Laut GenTG ist der Betreiber eine juristische oder natürliche Person oder eine nichtrechtsfähige Personenvereinigung, die unter ihrem Namen eine gentechnische Anlage errichtet oder betreibt, gentechnische Arbeiten oder Freisetzungen durchführt oder Produkte, die gentechnisch veränderte Organismen enthalten oder aus solchen bestehen, erstmalig in Verkehr bringt. Im Hinblick auf gentechnische Arbeiten in geschlossenen Systemen trägt er gemäß GenTG und GenTSV die Verantwortung für alle durchgeführten Arbeitsabläufe, letztendlich also für die Sicherheit des gesamten Anlagenbetriebs. Daraus ergibt sich eine Reihe von Betreiberpflichten, von denen einige wichtige nachfolgend genannt sind:

Biologische Sicherheit (BBS) zu bestellen. Der Betreiber besitzt diverse Mitteilungspflichten, beispielsweise bei einem Wechsel des PL oder BBS, bei nicht wesentlichen Raumänderungen, bei unerwarteten Vorkommnissen oder bei einer Betriebseinstellung (Abbildung 10).

Kann der Betreiber bzw. sein gesetzlicher Vertreter die oben genannten Pflichten nicht alleine erfüllen, kann er sie an befähigte Personen delegieren. Die Delegation von Pflichten des Betreibers an Dritte sollte dabei schriftlich erfolgen.

6.2 Der Projektleiter

6.3 Der Beauftragte für die Biologische Sicherheit

Der Beauftragte für die Biologische Sicherheit (BBS) wird vom Betreiber bestellt und ist verantwortlich für die Überwachung der gentechnischen Arbeiten und die Beratung des Betreibers (bzw. des Betriebs- oder Personalrats) in allen Fragen der biologischen Sicherheit. Dem BBS obliegt eine jährliche schriftliche Berichterstattungspflicht an den Betreiber („BBS-Bericht“). Auch für BBS muss eine Sachkunde gemäß § 17 GenTSV nachgewiesen werden (Abbildung 10). Der BBS darf nicht mit dem
Betreiber und dem PL identisch sein, da er sich sonst selbst beraten und überwachen würde.

6.4 Nachweis der Sachkunde gemäß §§ 15 und 17 GenTSV

Projektleiter (PL) und Beauftragte für die Biologische Sicherheit (BBS) müssen gemäß §§ 15 und 17 GenTSV insbesondere nachweisbare Kenntnisse in klassischer und molekularer Genetik und praktische Erfahrungen im Umgang mit Mikroorganismen, Pflanzen oder Tieren und die erforderlichen Kenntnisse über Sicherheitsmaßnahmen und Arbeitsschutz bei gentechnischen Arbeiten besitzen.

Die erforderliche Sachkunde wird nachgewiesen durch:
1. den Abschluss eines naturwissenschaftlichen oder medizinischen oder tier-
medizinischen Hochschulstudiums,
2. eine mindestens dreijährige Tätigkeit auf dem Gebiet der Gentechnik, insbe-
sondere der Mikrobiologie, der Zellbiologie, der Virologie oder der Molekular-
biologie und
3. die Bescheinigung über den Besuch einer von der zuständigen Landesbehör-
de anerkannten Fortbildungsveranstaltung (siehe unten).

Sollen gentechnische Arbeiten im Produktionsbereich durchgeführt werden, kann die
erforderliche Sachkunde nachgewiesen werden durch:
1. den Abschluss eines ingenieurwissenschaftlichen Hoch- oder Fachhochschul-
studiums,
2. eine mindestens dreijährige Tätigkeit auf dem Gebiet der Bioverfahrenstechnik
und
3. die Bescheinigung über den Besuch einer von der zuständigen Landesbehör-
de anerkannten Fortbildungsveranstaltung (siehe unten).

Fortbildungsveranstaltung gemäß §§ 15 und 17 GenTSV
Eine von der zuständigen Landesbehörde anerkannte Fortbildungsveranstaltung
gemäß §§ 15 und 17 GenTSV muss die wesentlichen Grundzüge folgender The-
menbereiche umfassen:

1. Gefährdungspotenziale von Organismen bei gentechnischen Arbeiten in gen-
technischen Anlagen unter besonderer Berücksichtigung der Mikrobiologie
und bei Freisetzungen,
2. Sicherheitsmaßnahmen für gentechnische Laboratorien, gentechnische Pro-
duktionsbereiche und Freisetzungen und
3. Rechtsvorschriften zu Sicherheitsmaßnahmen für gentechnische Laboratorien,
 Produktionsbereiche und Freisetzungen und zum Arbeitsschutz.

Informationen über die Termine der Fortbildungsveranstaltung gemäß §§ 15 und 17
GenTSV erhalten sie von ihrer zuständigen Regierung.
7 Verwaltungsverfahren für gentechnische Anlagen und Arbeiten

7.1 Anzeigeverfahren

Eine Anzeige ist erforderlich für:

- die Errichtung und den Betrieb gentechnischer Anlagen, in denen gentechnische Arbeiten der Sicherheitsstufe 1 durchgeführt werden sollen und die darin vorgesehenen erstmaligen gentechnischen Arbeiten.
- die wesentliche Änderung der Lage, der Beschaffenheit oder des Betriebes einer gentechnischen Anlage für gentechnische Arbeiten der Sicherheitsstufe 1.
- die Durchführung weiterer gentechnischer Arbeiten der Sicherheitsstufe 2.

Im Gegensatz zum Anmelde- bzw. Genehmigungsverfahren gibt es beim Anzeigeverfahren keine Wartefristen. So kann sofort nach Eingang der Anzeige bei der zuständigen Regierung (ROB bzw. RUFr) eine gentechnische Anlage für S1-Arbeiten errichtet, betrieben oder wesentlich geändert werden bzw. mit S1-Arbeiten (bei erstmaligen Arbeiten) oder S2-Arbeiten (bei weiteren Arbeiten) begonnen werden (Tabelle 4). Sollten die eingereichten Unterlagen nicht vollständig oder ausreichend sein, wird die Behörde den Betrieb vorläufig untersagen und entsprechende Unterlagen nachfordern. Es empfiehlt sich daher, bereits im Vorfeld mit der Behörde Kontakt aufzunehmen.
7.2 Anmeldeverfahren

Eine Anmeldung ist erforderlich für:

- die Errichtung und den Betrieb gentechnischer Anlagen, in denen gentechnische Arbeiten der Sicherheitsstufe 2 durchgeführt werden sollen und die darin vorgesehenen erstmaligen Arbeiten.
- die wesentliche Änderung der Lage, der Beschaffenheit oder des Betriebes einer gentechnischen Anlage für gentechnische Arbeiten der Sicherheitsstufe 2.

7.3 Genehmigungsverfahren

Eine Genehmigung ist immer erforderlich für:

- die Errichtung und den Betrieb gentechnischer Anlagen, in denen gentechnische Arbeiten der Sicherheitsstufen 3 oder 4 durchgeführt werden sollen und die darin vorgesehenen erstmaligen Arbeiten.
- die wesentliche Änderung der Lage, der Beschaffenheit oder des Betriebes einer gentechnischen Anlage für gentechnische Arbeiten der Sicherheitsstufen 3 oder 4.
- die Durchführung weiterer gentechnischer Arbeiten der Sicherheitsstufen 3 oder 4.
Eine Genehmigung ist optional für:

- die Errichtung und den Betrieb gentechnischer Anlagen, in denen gentechnische Arbeiten der Sicherheitsstufe 2 durchgeführt werden sollen, und die darin vorge sehenen erstmaligen Arbeiten.
- die wesentliche Änderung der Lage, der Beschaffenheit oder des Betriebes einer gentechnischen Anlage für gentechnische Arbeiten der Sicherheitsstufe 2.
- die Durchführung weiterer gentechnischer Arbeiten der Sicherheitsstufe 2.

Tabelle 4. Verwaltungsverfahren bei gentechnischen Vorhaben

Diese Tabelle fasst die bei gentechnischen Vorhaben erforderlichen Verwaltungsverfahren unter Angabe der frühesten Umsetzungspunkte zusammen.

<table>
<thead>
<tr>
<th>Vorhaben</th>
<th>Sicherheitsstufe der gentechnischen Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Anzeige</td>
</tr>
<tr>
<td></td>
<td>sofort nach</td>
</tr>
<tr>
<td></td>
<td>Eingang bei der Behörde</td>
</tr>
<tr>
<td></td>
<td>optional: Genehmigung nach Erhalt des Bescheides (i.d.R. innerhalb von 90 bzw. 45 Tagen)</td>
</tr>
<tr>
<td>Wesentliche Änderung der Anlage</td>
<td>Anzeige</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>optional: Genehmigung nach Erhalt des Bescheides (i.d.R. innerhalb von 45 Tagen)</td>
</tr>
<tr>
<td>Durchführung weiterer Arbeiten</td>
<td>Anzeige</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>optional: Genehmigung nach Erhalt des Bescheides (i.d.R. innerhalb von 45 Tagen)</td>
</tr>
</tbody>
</table>
7.4 Formblätter und zuständige Regierungen

Um die Verwaltungsverfahren möglichst einfach zu gestalten, wurden für die Antragstellung spezielle Formblätter entworfen. Darin werden die für die Beurteilung des Antrags erforderlichen Daten abgefragt. Der Betreiber kann sich jederzeit an die für ihn zuständige Regierung wenden, um sich beraten zu lassen (Abbildung 11). Hierbei können viele Fragen bereits im Vorfeld einer Antragstellung geklärt werden. Für die zuständige Behörde besteht eine Beratungspflicht.

Abbildung 11. Zuständige Regierungen. Für den Vollzug des Gentechnikgesetzes sind in Bayern zwei Regierungen zuständig: die Regierung von Unterfranken (RUFr) für die Regierungsbezirke Oberfranken, Mittelfranken, Unterfranken und Oberpfalz (Nordbayern) und die Regierung von Oberbayern (ROB) für die Regierungsbezirke Oberbayern, Niederbayern und Schwaben (Südbayern).
Zuständig für Oberfranken, Mittelfranken, Unterfranken und die Oberpfalz
Regierung von Unterfranken (RUFr)
Peterplatz 9
97070 Würzburg
Telefon: 0931 / 380 – 00
Internet: www.regierung.unterfranken.bayern.de
E-Mail: gentechnik@reg-ufr.bayern.de

Zuständig für Oberbayern, Niederbayern und Schwaben
Regierung von Oberbayern (ROB)
Maximilianstraße 39
80538 München
Telefon: 089 / 2176 – 0
Internet: www.regierung.oberbayern.bayern.de
E-Mail: gentechnik@reg-ob.bayern.de

Die für ein Verwaltungsverfahren empfohlenen Formblätter sind in der Tabelle 5 aufgelistet. Sie können als MS Word Dokumente von der Homepage des LGL heruntergeladen werden (www.lgl.bayern.de).
Gentechnische Arbeiten in gentechnischen Anlagen

Tabelle 5. Formblätter. Diese Tabelle listet die für die Verwaltungsverfahren empfohlenen Formblätter. Da die erforderlichen Angaben in Abhängigkeit von Art und Umfang des geplanten Vorhabens variieren können, ist eine Rücksprache mit den zuständigen Regierungen empfehlenswert.

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Formblatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzeige, Anmeldung oder Antrag auf Genehmigung nach dem GenTG in den Sicherheitsstufen 2 bis 4</td>
<td>A</td>
</tr>
<tr>
<td>Angaben zur Sachkunde des Projektleiters/BBS</td>
<td>S</td>
</tr>
<tr>
<td>Angaben zu Sicherheitsmaßnahmen im Laborbereich</td>
<td>AL</td>
</tr>
<tr>
<td>Angaben zu Sicherheitsmaßnahmen im Produktionsbereich</td>
<td>AP</td>
</tr>
<tr>
<td>Angaben zu Sicherheitsmaßnahmen in Gewächshäusern und Klimakammern</td>
<td>AG</td>
</tr>
<tr>
<td>Angaben zu Sicherheitsmaßnahmen im Tierhaltungsbereich</td>
<td>AT</td>
</tr>
<tr>
<td>Anzeige einer Anlage für gentechnische Arbeiten der Sicherheitsstufe 1</td>
<td>AZ – S1</td>
</tr>
<tr>
<td>Angaben zu den vorgesehenen gentechnischen Arbeiten</td>
<td>GA</td>
</tr>
<tr>
<td>Angaben zum Spenderorganismus</td>
<td>GS</td>
</tr>
<tr>
<td>Angaben zum Empfängerorganismus</td>
<td>GE</td>
</tr>
<tr>
<td>Angaben zum Vektor</td>
<td>GV</td>
</tr>
<tr>
<td>Angaben zum gentechnisch veränderten Organismus (GVO)</td>
<td>GO</td>
</tr>
<tr>
<td>Angaben zur Arbeitsmedizinischen Vorsorge</td>
<td>M</td>
</tr>
<tr>
<td>Aufzeichnung über gentechnische Arbeiten der Sicherheitsstufen 1 und 2</td>
<td>Z (Kurz)</td>
</tr>
<tr>
<td>Aufzeichnungen über gentechnische Arbeiten ab Sicherheitsstufe 3</td>
<td>Z (Lang)</td>
</tr>
</tbody>
</table>
7.5 Weitergehende Informationen über häufige Verwaltungsverfahren

Anzeige einer Anlage für gentechnische Arbeiten der Sicherheitsstufe 1

Eine Anlage für gentechnische Arbeiten der Sicherheitsstufe 1 muss der zuständigen Behörde (Regierung) lediglich vor Beginn der gentechnischen Arbeiten angezeigt werden. Die Anzeige muss Folgendes beinhalten:

- Angaben entsprechend Formblatt AZ-S1
- ggf. Angaben entsprechend Formblatt AP (Produktionsbereich), Formblatt AT (Tierhaltung) oder AG (Gewächshaus)
- Gebäudeplan (Lageplan)
- Betriebsanweisung Gentechnik
- ggf. Nachweise für die Ernennung des PL und die Bestellung des BBS
- Angaben entsprechend Formblatt S (mit Sachkundenachweis) bei noch nicht nachgewiesener Sachkunde des PL oder BBS

Mit den ersten gentechnischen Arbeiten der Sicherheitsstufe 1 darf sofort nach Eingang der Anzeige bei der zuständigen Regierung begonnen werden. Über die gentechnischen Arbeiten müssen Aufzeichnungen gemäß GenTAufzV geführt werden. Hierfür kann das Formblatt Z (kurz) verwendet werden.

Der Betreiber kann sich jederzeit an die für ihn zuständige Regierung wenden, um sich beraten zu lassen. Hierbei können viele Fragen bereits im Vorfeld der Anzeige geklärt werden. Die zuständige Behörde wird in der Regel zeitnah nach Eingang der Anzeige eine erste Überwachung der neuen gentechnischen Anlage vor Ort durchführen.

Durchführung weiterer gentechnischer Arbeiten der Sicherheitsstufe 1

müssen stets vor Beginn der gentechnischen Arbeiten aufgezeichnet werden. Die Unterlagen sind der zuständigen Behörde auf Verlangen vorzulegen.

Anmeldung einer Anlage für gentechnische Arbeiten der Sicherheitsstufe 2

Eine Anlage für gentechnische Arbeiten der Sicherheitsstufe 2 muss bei der zuständigen Behörde (Regierung) angemeldet werden. Dafür sollte Folgendes eingereicht werden:

- Angaben entsprechend Formblatt A
- Angaben entsprechend Formblatt AL (Labor), ggf. Angaben entsprechend Formblatt AP (Produktionsbereich), Formblatt AT (Tierhaltung) oder AG (Gewächshaus)
- Angaben entsprechend Formblatt GA und GO, ggf. Angaben entsprechend Formblätter GE, GS und GV
- ggf. Angaben entsprechend Formblatt M (Arbeitsmedizinische Vorsorge)
- Gebäudeplan (Lageplan)
- Betriebsanweisung Gentechnik
- Hygieneplan
- ggf. Nachweise für die Ernennung des PL und die Bestellung des BBS
- Angaben entsprechend Formblatt S (mit Sachkundenachweis) bei noch nicht nachgewiesener Sachkunde des PL oder BBS

Mit den ersten gentechnischen Arbeiten der Sicherheitsstufe 2 kann 45 Tage nach Eingang der Anmeldung bei der Behörde oder mit deren Zustimmung auch früher begonnen werden. Hat die Behörde für das angemeldete Vorhaben Auflagen festgesetzt, müssen diese vor Beginn der gentechnischen Arbeiten umgesetzt werden. Im Rahmen der Anmeldung führt die Behörde i. d. R. eine Überprüfung der geplanten gentechnischen Anlage vor Ort durch.

Über die gentechnischen Arbeiten müssen Aufzeichnungen gemäß GenTAufzV geführt werden. Hierfür kann das Formblatt Z (kurz) verwendet werden.

Der Betreiber kann sich jederzeit an die für ihn zuständige Regierung wenden, um sich beraten zu lassen. Hierbei können viele Fragen bereits im Vorfeld der Anmeldung geklärt werden.
Anzeige weiterer gentechnischer Arbeiten der Sicherheitsstufe 2

Weitere gentechnische Arbeiten der Sicherheitsstufe 2 müssen der zuständigen Behörde (Regierung) angezeigt werden. Die Anzeige muss Folgendes beinhalten:

- Angaben entsprechend Formblatt A
- Angaben entsprechend Formblatt GA und GO, ggf. Angaben entsprechend Formblätter GE, GS und GV
- ggf. Angaben entsprechend Formblatt M (Arbeitsmedizinische Vorsorge)
- ggf. angepasste Betriebsanweisung Gentechnik
- ggf. angepasster Hygieneplan
- ggf. Nachweise für die Ernennung des PL und die Bestellung des BBS
- Angaben entsprechend Formblatt S (mit Sachkundenachweis) bei noch nicht nachgewiesener Sachkunde des PL oder BBS

8 Häufig gestellte Fragen – Frequently asked questions (FAQ)
8.1 Was versteht man unter einem gentechnisch veränderten Organismus?

Ein gentechnisch veränderter Organismus ist gemäß § 3 Abs. 3 GenTG wie folgt definiert: „Ein Organismus, mit Ausnahme des Menschen, dessen genetisches Material in einer Weise verändert*) worden ist, wie sie unter natürlichen Bedingungen durch Kreuzen oder natürliche Rekombination nicht vorkommt; ein gentechnisch veränderter Organismus ist auch ein Organismus, der durch Kreuzung oder natürliche Rekombination zwischen gentechnisch veränderten Organismen oder mit einem oder mehreren gentechnisch veränderten Organismen oder durch andere Arten der Vermehrung eines gentechnisch veränderten Organismus entstanden ist, sofern das genetische Material des Organismus Eigenschaften aufweist, die auf gentechnische Arbeiten zurückzuführen sind."

*) Verfahren der Veränderung genetischen Materials gemäß § 3 Abs. 3a GenTG sind insbesondere:

- Verfahren, bei denen in einem Organismus direkt Erbgut eingebracht wird, welches außerhalb des Organismus hergestellt wurde und natürlicherweise nicht darin vorkommt, einschließlich Mikroinjektion, Makroinjektion und Mikroverkapselung.

- Zellfusionen oder Hybridisierungsverfahren, bei denen lebende Zellen mit neuen Kombinationen von genetischem Material, das unter natürlichen Bedingungen nicht darin vorkommt, durch die Verschmelzung zweier oder mehrer Zellen mit Hilfe von Methoden gebildet werden, die unter natürlichen Bedingungen nicht vorkommen.
8.2 Welche Informationen beinhaltet die „Onkogen-Datenbank“ der ZKBS?

Die Auswahl der Gene bzw. Nukleinsäuren mit einem transformierenden Potenzial erfolgt dabei anhand folgender Kriterien:

- Gene bzw. Nukleinsäuren von Tumorviren, für die gezeigt ist, dass sie für das onkogene Potenzial des Virus verantwortlich sind,
- Gene bzw. Nukleinsäuren, die maßgeblich an der Entstehung humaner Tumore beteiligt sind,
- Gene bzw. Nukleinsäuren, für die gezeigt ist, dass sie in vitro Säugetierzellen transformieren,
- Gene bzw. Nukleinsäuren, für die gezeigt ist, dass sie im Tierversuch Tumore erzeugen.

Bei gentechnischen Arbeiten mit Onkogenen sind ggf. zusätzliche Sicherheitsmaßnahmen notwendig (siehe Kapitel 8.3.). Diese sind in der Onkogen-Datenbank bei den entsprechenden Genen und Arbeiten vermerkt. Die Onkogen-Datenbank der ZKBS findet sich auf der Homepage des BVL.
8.3 Was versteht man unter „S2 mit zusätzlichen Maßnahmen“?

Die ZKBS empfiehlt, gentechnische Arbeiten mit rekombinanten adenoviralen und AAV-basierten replikationsdefekten Vektoren, die durch das übertragene Gen transformierendes Potenzial aufweisen können, der Sicherheitsstufe 2 zuzuordnen und besondere Maßnahmen zum Personenschutz einzuhalten. Um den erforderlichen Personenschutz bei diesen Arbeiten zu erreichen, sind folgende Sicherheitsmaßnahmen zusätzlich zu den Sicherheitsmaßnahmen der Stufe 2 vorgeschrieben:

- Arbeiten, bei denen Aerosole entstehen können, sind in einer Sicherheitswerkbank der Klasse II durchzuführen,
- Gefäße und Geräte, die aus der Sicherheitswerkbank entfernt werden, sind zuvor von außen zu desinfizieren,
- die Vektoren müssen in dicht verschlossenen, bruchsicheren und außen desinfizierten Behältern transportiert werden,
- die Belüftung von Zellkulturlaschen, in denen die Vektoren vorliegen, erfolgt erst im CO2-Brutschrank, um das Austreten von Kulturflüssigkeit zu vermeiden,
- das Laboratorium sowie die Sicherheitswerkbank, in denen die Arbeiten durchgeführt werden, sind entsprechend zu kennzeichnen,
- Zutritt zum Labor hat, außer unmittelbar an den Arbeiten beteiligte Personen, nur ausreichend unterrichtetes Personal,
- während der Arbeiten sind Schutzhandschuhe zu tragen,
- die Schutzhandschuhe sind regelmäßig zu desinfizieren oder zu wechseln,
- bei den Arbeiten ist eine Atemschutzmaske mit FFP3-Filter zu tragen.

Alternativ können gentechnische Arbeiten mit den o. g. Vektoren unter folgenden Sicherheitsmaßnahmen durchgeführt werden:

- gentechnische Arbeiten mit den Vektoren, bei denen Aerosole entstehen können, sind in einer Sicherheitswerkbank Klasse III durchzuführen,
- die Vektoren müssen in dicht verschlossenen, bruchsicheren und außen desinfizierten Behältern eingeschlossen sein. Das Öffnen, Verschließen und Desinfizieren hat in der Werkbank Klasse III zu erfolgen.
Werden bei gentechnischen Arbeiten zur Übertragung von Nukleinsäureabschnitten mit onkogenem Potential **retrovirale einschließlich lentivirale Vektoren** verwendet, welche durch Pseudotypisierung eine verstärkte Partikelstabilität oder ein Wirtsspektrum für humane Epithelzellen erhalten oder welche aufgrund eines veränderten Glykosylierungsmusters vom humanen Komplementsystem nicht erkannt werden, wird zur Vermeidung einer Schmierinfektion empfohlen zusätzlich zu den Maßnahmen der Sicherheitsstufe 2 einen Mund- und Nasenschutz zu tragen.

Weitere Informationen finden sich in der „Empfehlung der ZKBS zu adenoviralen und AAV-abgeleiteten replikationsdefekten Vektoren mit Zellzyklus-regulierenden Genen“ (Az. 6790-10-83), der „Allgemeinen Stellungnahme der ZKBS zu häufig durchgeführten gentechnischen Arbeiten mit den zugrunde liegenden Kriterien der Vergleichbarkeit: Gentransfer mit Hilfe retroviraler Vektoren (Az. 6790-10-41) sowie in der Onkogen-Datenbank der ZKBS auf der **Homepage** des BVL.
8.4 Was versteht man unter einer wesentlichen Änderung und was ist dabei zu beachten?

Soll vom angezeigten, angemeldeten bzw. genehmigten gentechnischen Vorhaben abgewichen werden, ist zunächst zu beurteilen, ob die Änderungen wesentlich sind.

Nicht wesentliche Änderungen sind allenfalls mitteilungsbedürftig nach § 21 Abs. 1 oder 2 GenTG. Bei wesentlichen Änderungen muss die Anzeige, Anmeldung oder Genehmigung neu erfolgen (§ 8 Abs. 4 GenTG).

Demgemäß ist eine Änderung dann als wesentlich anzusehen, wenn sich die Zulasungsfrage bzw. die Frage der inhaltlichen Prüfung einer Anzeige neu stellt. Dies ist beispielsweise der Fall wenn:

- Räume in bedeutendem Ausmaß hinzugenommen werden sollen
- Räume grundlegend anders genutzt werden sollen
- sich die Kapazität der gentechnischen Anlage maßgeblich erhöht
- bei prüfungsrelevanten Änderungen der sicherheitstechnischen Ausstattung

Ändert sich das gentechnische Vorhaben nur insoweit, als weitere gentechnische Arbeiten durchgeführt werden sollen, sind die spezielleren Tatbestände in § 9 GenTG maßgeblich. Gibt es im Zuge dessen aber auch weitere wesentliche Änderungen des bisherigen gentechnischen Vorhabens, ist § 8 Abs. 4 GenTG einschlägig, der in diesem Fall weitere gentechnische Arbeiten einschließt. Die zuständige Regierung steht im Zweifelsfall für eine Beratung zur Verfügung.
8.5 Was ist der Unterschied zwischen Schutzstufe nach BioStoffV und Sicherheitsstufe nach GenTG?

Schutzstufe:
Die Schutzstufe wird in § 2 Abs. 13 der Biostoffverordnung definiert: „Schutzstufen orientieren sich an der Risikogruppe des jeweiligen Biostoffs und sind ein Maßstab für die Höhe der Infektionsgefährdung einer Tätigkeit. Entsprechend den Risikogruppen nach § 3 werden vier Schutzstufen unterschieden. Die Schutzstufen umfassen die zusätzlichen Schutzmaßnahmen die in den Anhängen II und III festgelegt oder empfohlen sind.“

Die Schutzstufenzuordnung richtet sich bei gezielten Tätigkeiten nach der Risikogruppe des ermittelten Biostoffs; werden Tätigkeiten mit mehreren Biostoffen ausgeübt, so richtet sich die Schutzstufenzuordnung nach dem Biostoff mit der höchsten Risikogruppe. Bei nicht gezielten Tätigkeiten richtet sich die Schutzstufenzuordnung nach der Risikogruppe des Biostoffs, der aufgrund der Wahrscheinlichkeit seines Auftretens, der Art der Tätigkeit bzw. der Art, Dauer, Höhe und Häufigkeit der Exposition den Grad der Infektionsgefährdung der Beschäftigten bestimmt.

Es gibt vier Schutzstufen: Die Schutzstufe 1 umfasst die allgemeinen Schutzmaßnahmen gemäß § 9 BioStoffV. Neben den Schutzmaßnahmen nach § 9 sind bei Tätigkeiten der Schutzstufe 2, 3 oder 4 zusätzliche Schutzmaßnahmen und Anforderungen gemäß § 10 (in Laboratorien, in der Versuchstierhaltung sowie in der Bio-
technologie), gemäß § 11 (in Einrichtungen des Gesundheitsdienstes) sowie gemäß den Anhängen II und III BioStoffV empfohlen beziehungsweise verbindlich festgelegt.

Sicherheitsstufe:
Die Sicherheitsstufen werden in § 3 Nr. 10 des Gentechnikgesetzes definiert, als: „Gruppen gentechnischer Arbeiten nach ihrem Gefährdungspotenzial.“
Sie beziehen sich ausschließlich auf gentechnische Arbeiten.
Es gibt vier Sicherheitsstufen: Sicherheitsstufe 1 (S1), kein Risiko für Mensch und Umwelt; Sicherheitsstufe 2 (S2), geringes Risiko für Mensch und Umwelt; Sicherheitsstufe 3 (S3), mäßiges Risiko für Mensch und Umwelt; Sicherheitsstufe 4 (S4), hohes Risiko für Mensch und Umwelt.

8.6 Was ist bei der Risikobewertung von primären Vertebratenzellen zu beachten?

Als primäre Zellen werden direkt aus Körperflüssigkeiten oder aus Körpergeweben gewonnene Explantate vielzelliger Organismen bezeichnet. In der „Stellungnahme der ZKBS zur Einstufung gentechnischer Arbeiten mit primären Zellen aus Vertebraten“ (Az. 6790-10-03) werden humane Zellen, nicht-humane Primatenzellen und Vertebratenzellen (außer Primaten) unterschieden.

Risikobewertung primärer humaner Zellen

- Primäre Zellen aus klinisch unauffälligen Spendern sind in die Risikogruppe 1 einzuordnen, wenn gezeigt ist, dass diese Zellen frei von HIV, HBV und HCV sind. Im Einzelfall, wenn ein begründeter Verdacht auf das Vorhandensein eines bestimmten Virus einer höheren Risikogruppe in den verwendeten Zellen besteht, sind diese auf die Abwesenheit dieses Virus zu überprüfen.
- Sind Spender oder die primären Zellen des Spenders nicht auf die Abwesenheit der o. g. Viren überprüft, so sind die primären Zellen grundsätzlich der Risikogruppe 2 zuzuordnen.
- Sind Spender oder die primären Zellen des Spenders nicht auf die Abwesenheit der o. g. Viren überprüft und sind die primären Zellen nicht permissiv für die o. g. Viren, so können die primären Zellen der Risikogruppe 1 zugeordnet werden, wenn sichergestellt ist, dass sie nicht mit Blut oder anderen für die o. g. Viren permissiven Zellen verunreinigt sind.

Risikobewertung primärer Zellen aus nicht-humanen Primaten

- Primäre Zellen, die klinisch unauffälligen, nicht-humanen Primaten aus veterinärmedizinisch kontrollierten Zuchten entnommen wurden, sind aufgrund der
weiten Verbreitung Interspezies-übertragbarer Viren der Risikogruppe 2 zuzuordnen, soweit keine gesonderte Risikobewertung vorgenommen wurde.

- Primäre Zellen, die klinisch unauffälligen Rhesusaffen (*Macaca mulatta*) oder Javaneraffen (*Macaca fascicularis*) aus veterinärmedizinisch kontrollierten Zuchten entnommen wurden und die negativ auf SIV, SRV, STLV und CeHV-1 (CeHV-1 wird auch Herpes B Virus genannt) getestet wurden, sind der Risikogruppe 1 zuzuordnen.

- Embryonale Stammzellen aus Rhesusaffen (*Macaca mulatta*) oder Javaneraffen (*Macaca fascicularis*), die durch in vitro-Fertilisation entwickelten Embryonen von Makaken aus veterinärmedizinisch kontrollierten Zuchten entnommen wurde, die negativ auf SIV, SRV und STLV getestet wurden, werden der Risikogruppe 1 zugeordnet.

- Primäre Zellen, die klinisch unauffälligen Weißbüschelaffen (*Callithrix jacchus*) aus veterinärmedizinisch kontrollierten Zuchten entnommen wurden, sind der Risikogruppe 1 zuzuordnen.

- Für Zellmaterial von nicht-humanen Primaten aus Wildfängen ist eine auf den Einzelfall bezogene Risikoabschätzung vorzunehmen, wobei mindestens von einer Zuordnung in die Risikogruppe 2 auszugehen ist.

Risikobewertung primärer Zellen aus Vertebraten (außer Primaten)

- Primäre Zellen aus Vertebraten (außer Primaten und *Chiroptera*) sind in die Risikogruppe 1 einzuordnen, wenn die Tiere keine Krankheitssymptome zeigen. Diese Zuordnung gilt für Tiere aus veterinärmedizinisch überprüften Beständen.

- Primäre Zellen aus *Chiroptera* (= Fleder- bzw. Flattertiere), die nachweislich frei von Rabies- (Tollwut-) Viren sind, werden in die Risikogruppe 1 eingestuft, wenn die Tiere keine Krankheitssymptome zeigen.

- Primäre Zellen aus *Chiroptera*, die nicht auf die Abwesenheit von Rabies- (Tollwut-) Viren getestet sind, werden der Risikogruppe 2 zugeordnet.

- Primäre Zellen, die aus Geweben oder Körperflüssigkeiten stammen, bei denen ein begründeter Verdacht auf das Vorliegen viraler Zoonose-Erreger im primären Gewebe besteht, werden in die Risikogruppe des Erregers eingestuft.
8.7 Warum ist es wichtig, Zellkulturen auf Kontamination mit Mykoplasmen zu testen?

8.8 Ist das Einbringen von mRNA in eukaryote Zellen eine gentechnische Arbeit?

Achtung: Diese Stellungnahme gilt nicht für Arbeiten, die die Entstehung gentechnisch veränderter Viren erwarten lassen, wie die Injektion (bzw. Transfection) rekombinanter Genome von RNA-Viren (z. B. Picornaviren) in somatische eukaryote Zellen, oder die Herstellung von rekombinanten Semliki-Forest-Viren.

Siehe hierzu auch die „Stellungnahme der ZKBS zum Einbringen von mRNA in eukaryote Zellen“ (Az. 6790-10-44).
8.9 Was ist bei gentechnischen Arbeiten mit Tat-Fusionsproteinen zu beachten?

Der Transaktivator der Transkription (Tat) des HIV-1 ist in der Lage, Rezeptor-unabhängig zelluläre Membranen zu durchdringen. Beim Tat-Protein konnte die für den Membrantransport verantwortliche Domäne auf kleine kationische Bereiche von 10 bis 16 Aminosäuren eingegrenzt werden. Die Fusion heterologer Proteine an die entsprechende Tat-Domäne bietet einen experimentellen Ansatz, um diese Proteine in eukaryote Zellen einzuführen. Tat-Fusionsproteine haben das Potenzial, in verschiedene Zelltypen effizient einzudringen und dort ihre Funktion auszuüben, wobei auf die Zielzelle kein Erbgut übertragen wird. Das Fusionsprotein wird innerhalb der Zielzelle abgebaut, sodass das übertragene Protein seine Funktion nur transient ausübt. Daher ist bei Tat-Fusionsproteinen dann kein Gefährdungspotenzial zu erwarten, wenn das fusionierte Protein keine Zellschädigungen verursacht.

Werden Tat-Fusionsproteine mit Hilfe von *E. coli* K12- oder *E. coli* B-Derivaten und prokaryoten pBR-abgeleiteten Expressionsvektoren oder mit Hilfe etablierter Zelllinien der Risikogruppe 1 und eukaryoten Expressionsvektoren exprimiert, und handelt es sich bei den Proteinen, die an die Tat-Domäne fusioniert wurden, um:

- virale Onkoproteine mit „hit and run“-Mechanismen
- Prionen oder Prionproteine von Mensch und Rind
- Apoptose-auslösende Proteine
- Toxine

so werden die GVO der Risikogruppe 2 zugeordnet. Gentechnische Arbeiten mit diesen GVO werden der Sicherheitsstufe 2 zugeordnet.

Handelt es sich bei den Proteinen, die an die Tat-Domäne fusioniert wurden, um andere als die oben aufgeführten, so werden die GVO der Risikogruppe 1 zugeordnet. Gentechnische Arbeiten mit diesen GVO werden der Sicherheitsstufe 1 zugeordnet. Das Tragen von Schutzhandschuhen und der Schutz vor Aerosolen bei Ultrabeschallung werden bei allen gentechnischen Arbeiten (sowohl S1, als auch S2) mit Tat-Fusionsproteinen empfohlen. Siehe hierzu auch „Allgemeine Stellungnahme der ZKBS zur Risikobewertung der Expression von Tat-Fusionsproteinen“ (Az. 6790-10-88).
8.10 Ist das Einbringen rekombinanter DNA in Tiere eine gentechnische Arbeit?

In jüngster Zeit wurden verschiedene Verfahren zum Einbringen rekombinanter DNA (rDNA) in Tiere neu entwickelt. Darunter zum Beispiel die intramuskuläre Injektion von rDNA in Kochsalzlösung, die intravenöse Injektion mittels Liposomen oder das Beschießen von Epidermis bzw. anderen Organen mit an Goldpartikeln konjugierter rDNA. Bei jedem dieser Verfahren kann davon ausgegangen werden, dass es zur Aufnahme der rDNA durch einige somatische Zellen des Tieres kommt. Dies ist Voraussetzung für das Ziel der Verfahren, nämlich die Expression der eingebrachten Nukleinsäureabschnitte in den somatischen Zellen.

Das Einbringen von rDNA in Tiere auf diese Weise (ohne Verwendung gentechnisch veränderter Organismen) stellt eine gentechnische Arbeit im Sinne des GenTG dar, wenn von einer stabilen Integration der rDNA in die Keimbahnzellen des Tieres ausgezogen ist. Eine stabile Integration von rDNA in die Keimbahnzellen ist die Grundlage für die Erzeugung transgener Tiere (= GVO).

Da bisher keine gesicherten Publikationen vorliegen, die die Annahme einer off target Keimbahn-Integration unter Anwendung der oben genannten (somatischen Gentransfer-) Verfahren rechtfertigen, werden diese Arbeiten nicht als Verfahren der Veränderung genetischen Materials angesehen. Es gilt hier allerdings, den aktuellen Stand von Wissenschaft und Technik im Auge zu behalten, vor allem im Bereich der Entwicklung neuer Vektorsysteme für den Transfer der rDNA. Die ZKBS empfiehlt in jedem Fall, die Versuchstiere nicht zu Züchtungszwecken zu verwenden. Falls das Ziel solcher Arbeiten jedoch explizit die stabile Integration der rDNA in die Keimbahnzellen der Tiere ist, so sind diese Arbeiten als Verfahren der Veränderung genetischen Materials gemäß GenTG anzusehen.

Achtung: Als Verfahren der Veränderung genetischen Materials gemäß GenTG sind alle Arbeiten mit rDNA anzusehen, die in den Tieren die Entstehung neuer Organismen (z. B. Viren) erwarten lassen. Dies kann besonders dann zutreffen, wenn virale oder bakterielle Nukleinsäureabschnitte in solche Tiere eingebracht werden, die aufgrund von Infektion oder genetischer Veränderung Mikroorganismen der Risiko-
Gentechnische Arbeiten in gentechnischen Anlagen

gruppe 2–4 abgeben oder wenn vollständige Virusgenome eingebracht werden. Im Einzelfall ist die Kontaktaufnahme mit den Vollzugsbehörden zu empfehlen.
8.11 Ist die Verwendung der Zinkfinger-Nuklease-Technologie 1 (ZFN-1) eine gentechnische Arbeit?

8.12 Was versteht man unter „Synthetischer Biologie“?

- **Chemische Synthese von Genen und Genomen.** Durch die neuen Möglichkeiten der *de novo* Synthese langkettiger DNA-Fragmente lassen sich Gene und sogar ganze Genome am Reißbrett entwerfen und ohne Matrize im Labor herstellen.

- **Entwicklung von Minimalzellen.** Minimalzellen sind (lebende) Zellen, die auf essenzielle Lebensfunktionen reduziert wurden. Sie besitzen Minimalgenome, die nur noch solche Gene tragen, die für ein Leben unter definierten Bedingungen benötigt werden. Minimalgenome können dabei als Plattform („Chassis“) genutzt werden, um genetische Komponenten für gewünschte Stoffwechselleistungen in einem vereinfachten zellulären System (parallel) zu studieren. Minimalzellen sind weiterhin für die Optimierung biotechnologischer Produktionsverfahren von besonderem Interesse.

- **Konstruktion von komplexen genetischen Schaltkreisen.** Genetische Schaltkreise versuchen zelluläre Regulationsvorgänge künstlich so zu modifizieren, dass diese durch Zugabe exogener Substanzen an- bzw. abgeschaltet werden können. In Kombination mit der Entwicklung modularer genetischer Einheiten die nach Einbringen in die Zelle zuvor definierte Aufgaben erfüllen (BioBricks), lassen sich Organismen entwickeln, die externe Signale verarbeiten und definierte Antworten geben. Organismen mit komplexen genetischen Schaltkreisen könnten z. B. als Sensoren für gefährliche Chemikalien in der Umwelt dienen.

- **Schaffung von orthogonalen (frei kombinierbaren) Biosystemen.** Neu eingebrachte genetische Komponenten sollten nicht mit dem bestehenden zellulären Biosystem in Wechselwirkung treten, damit sie frei und unabhängig von einander funktionieren können. Als Beispiel für die Schaffung orthogonaler Biosysteme sei hier das Engineering des genetischen Codes genannt, um künstliche Aminosäuren in Proteine einzuschleusen. Auf diese Weise könnten zelluläre
Systeme zur Herstellung von beliebigen Aminosäurepolymeren umprogrammiert werden, die als neue Werkstoffe oder Medikamente dienen könnten.

Die Zentrale Kommission für die Biologische Sicherheit (ZKBS) beobachtet die aktuellen wissenschaftlichen Entwicklungen und beschäftigt sich mit sicherheitsrelevanten Fragen der synthetischen Biologie. Einen ersten Bericht mit dem Titel „Monitoring der Synthetischen Biologie in Deutschland“ hat die ZKBS im November 2012 veröffentlicht. Er kann von der Internetseite des BVL (Rubrik: Zentrale Kommission für die Biologische Sicherheit) heruntergeladen werden.
Anhänge

Anhang 1: Kriterien für die Risikobewertung von Spender- und Empfängerorganismus gemäß Anhang I Nr. 1 GenTSV.

- Name und Bezeichnung
- Grad der Verwandtschaft
- Herkunft des (der) Organismus(en)
- Information über reproduktive Zyklen (sexuell / asexuell) des Ausgangsorganismus oder ggf. des Empfängerorganismus
- Angaben über frühere gentechnische Veränderungen
- Stabilität des Empfängerorganismus in Bezug auf die einschlägigen genetischen Merkmale
- Pathogenität des Organismus für abwehrgesunde Menschen oder Tiere
- kleinste infektiöse Dosis
- Toxizität für die Umwelt sowie Toxizität und Allergenität für Menschen
- Widerstandsfähigkeit des Organismus: Überleben des Organismus bzw. Erhalten der Vermehrungs- und Infektionsfähigkeit von Mikroorganismen unter relevanten Bedingungen
- Kolonisierungskapazität
- Wirtsbereich
- Art der Übertragung, z. B. durch direkten und indirekten Kontakt mit der verletzten oder unverletzten Haut oder Schleimhaut, Aerosole und Staub über den Atemtrakt, Wasser oder Lebensmittel über den Verdauungstrakt, Biss, Stich oder Injektion sowie über die Keimbahn bei tierischen Überträgern oder dialazentare Übertragung.
- Möglichkeit der Übertragung von Krankheitserregern durch den Organismus
- Verfügbarkeit von Therapeutika und/oder Impfstoffen und/oder anderen wirksamen Methoden zur Verhütung und Behandlung
- Art und Eigenschaften der enthaltenen Vektoren: Sequenz, Mobilisierbarkeit, Wirtsspezifität, Vorhandensein von relevanten Genen, z. B. Resistenzgenen
- Adventiv-Agenzien, die eingefügtes genetisches Material mobilisieren könnten
- andere potenziell signifikante physiologische Merkmale
- Stabilität dieser Merkmale
- Epidemiologische Situation: Vorkommen und Verbreitung des Organismus, Rolle von lebenden Überträgern und Organismenreservoirs, Ausmaß der natürlichen Resistenzen bei Mensch und Tier gegen den Organismus, Grad der erworbenen Immunität (z. B. durch stille Feiung und Impfung), Vorkommen eines geeigneten Tierwirts, Resistenz bei Pflanzen (natürliche oder durch Züchtung bedingte), Vorkommen (Nichtvorkommen) und Verbreitung einer geeigneten Wirtspflanze für den Organismus
- bedeutende Beteiligung an Umweltprozessen (wie Stickstofffixierung oder pH-Regelung)
- Vorliegen von geeigneten Bedingungen zur Besiedelung der sonstigen Umwelt durch den Organismus
- Wechselwirkung zu anderen und Auswirkungen auf andere Organismen in der Umwelt (einschließlich voraussichtlicher konkurrierender oder symbiotischer Eigenschaften)
- Fähigkeit, Überlebensstrukturen zu bilden (wie Samen, Sporen oder Sklerotien) und deren Ausbreitungsmöglichkeiten.
Gentechnische Arbeiten in gentechnischen Anlagen

Anhang 2: Kriterien für die Risikobewertung des gentechnisch veränderten Organismus gemäß Anhang I Nr. 2 GenTSV.

Beschreibung der gentechnischen Veränderung:
- Beschreibung der Veränderung einschließlich des Verfahrens zur Einführung des Vektors / Inserts in den Empfängerorganismus oder des Verfahrens, das zur Erzielung der betreffenden gentechnischen Veränderung angewandt wird
- Herkunft des genetischen Materials, ggf. Identität des Spenderorganismus/ der Spenderorganismen und der Merkmale
- vorangegangene gentechnische Veränderungen des Inserts
- Funktion der betreffenden gentechnischen Veränderung und / oder der neuen Nukleinsäure
- Art und Herkunft des Vektors
- Struktur und Menge eines Vektors und / oder einer Nukleinsäure des Spenderorganismus, die noch in der Endstruktur des veränderten Organismus vertrieben ist
- Stabilität des Organismus in Bezug auf die gentechnisch veränderten Merkmale
- Häufigkeit der Mobilisierung des eingefügten Vektors und/oder Fähigkeit zur Übertragung genetischer Information
- Höhe der Expression des gentechnisch eingeführten Materials; Messverfahren und Empfindlichkeitsgrad
- Ort des eingefügten genetischen Materials (Möglichkeit einer Aktivierung / Deaktivierung von Wirtsgenen durch die Einfügung)
- Aktivität des zum Expression gebrachten Proteins.

Gesundheitliche Erwägungen:
- toxische oder allergene Auswirkungen der GVO und / oder ihrer Stoffwechselprodukte
- Produktrisiken
- Vergleich der Pathogenität des GVO mit der des Spender- oder Empfängerorganismus oder ggf. Ausgangsorganismus
- Kolonisierungskapazität

Umwelterwägungen:
- Faktoren, die das Überleben, die Vermehrung und die Verbreitung der GVO in der Umwelt beeinflussen
- verfügbare Techniken zur Erfassung, Identifizierung und Überwachung der GVO
- verfügbare Techniken zur Erfassung der Übertragung des gentechnisch eingeführten Materials auf andere Organismen
- bekannte und vorhergesagte Habitate des GVO
- Beschreibung der Ökosysteme, auf die der Organismus unbeabsichtigt verbreitet werden könnte
- erwarteter Mechanismus und Ergebnis der Wechselwirkung zwischen dem GVO und den Organismen oder Mikroorganismen, die im Falle einer Freisetzung in die Umwelt belastet werden könnten
- bekannte oder vorhergesagte Auswirkungen auf Pflanzen und Tiere, wie Krankheiten hervorrufende Eigenschaften, Infekti-on, Toxizität, Virulenz, Überträger der Krankheiten hervorrufenden Eigenschaften, Allergenität, veränderte Muster der Antibiotikaresistenz, veränderter Tropismus, Kolonisierung
- bekannte oder vorhergesagte Beteiligung an biogeochemischen Prozessen
- Verfügbarkeit von Methoden zur Dekontamination des Gebiets im Falle eines Austretens von Organismen in die Umwelt.

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit
Anhang 3: Zuordnung gentechnischer Arbeiten mit Mikroorganismen und Zellkulturen im Produktionsbereich zu Sicherheitsstufen gemäß § 7 GenTSV.

Gentechnische Arbeiten mit Mikroorganismen und Zellkulturen im Produktionsbereich sind dabei der Sicherheitsstufe 1 zuzuordnen, wenn sie folgende Voraussetzungen erfüllen:

1) die Empfängerorganismen sind
 − Organismen der Risikogruppe 1 nach § 5 Abs. 1 Satz 1 GenTSV mit experimentell erwiesener oder langer sicherer Verwendung oder mit eingebauten biologischen Sicherheitsmaßnahmen, die die Überlebens- und Replikationsfähigkeit in der Umwelt begrenzen,
 − eukaryote Zellen, die nicht spontan zu Organismen regenerieren, und geben keine Organismen der Risikogruppen 2 bis 4 ab,

2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren
 − sind gut beschrieben und frei von Nukleinsäuresequenzen mit bekanntem Gefährdungspotenzial,
 − sind in der Größe so weit wie möglich auf die genetischen Sequenzen begrenzt, die zur Erreichung des beabsichtigten Zweckes notwendig sind,
 − erhöhen die Stabilität des Organismus in der Umwelt nicht, soweit dies nicht für die beabsichtigte Funktion erforderlich ist,
 − sind wenig mobilisierbar,
 − übertragen keine Resistenzgene auf andere Mikroorganismen, die diese nicht von Natur aus aufnehmen, wenn eine solche Aufnahme die Anwendung von Heilmitteln zur Kontrolle von Infektionskrankheiten des Menschen oder von Nutztieren in Frage stellen könnte,

3) der GVO
 − ist unter den gewählten Verwendungsbedingungen (z. B. im Reaktor oder Fermenter) genauso sicher wie der Empfängerorganismus, aber mit begrenzter Überlebens- oder Replikationsfähigkeit und ohne nachteilige Folgewirkungen für die Umwelt,
 − überschreitet nicht das Gefährdungspotenzial von Organismen der Risikogruppe 1 und
 − gibt keine GVO höherer Risikogruppen ab; nach dem Stand der Wissenschaft ist nicht zu erwarten, dass der GVO Krankheiten bei Menschen, Tieren oder Pflanzen hervorruft;

Gentechnische Arbeiten mit Mikroorganismen und Zellkulturen im Produktionsbereich sind dabei der Sicherheitsstufe 2, 3 oder 4 zuzuordnen, wenn der GVO nach § 5 Abs. 1 Satz 2 GenTSV mit Anhang I Nr. 2 GenTSV, für die Rechtsgüter nach § 1 Nr. 1 GenTG insgesamt bei

− der Sicherheitsstufe 2 ein geringes,
− der Sicherheitsstufe 3 ein mäßiges,
− der Sicherheitsstufe 4 ein hohes

Risiko darstellt. Die Zuordnung zu den Sicherheitsstufen 2, 3 und 4 erfolgt entsprechend § 7 Abs. 3 Nr. 2 bis 4 GenTSV, wobei hinsichtlich der verwendeten Organismen eine nicht nur vorläufige Bewertung gemäß § 5 Abs. 1 GenTSV erforderlich ist.
Gentechnische Arbeiten in gentechnischen Anlagen

Anhang 4: Zuordnung gentechnischer Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken zu Sicherheitsstufen gemäß § 7 GenTSV.

Gentechnische Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken sind der Sicherheitsstufe 1 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:

1) Die Empfängerorganismen sind:
 − Organismen der Risikogruppe 1 nach § 5 Abs. 1 Satz 1 GenTSV oder Stämme von Organismenarten der Risikogruppen 2 bis 4, die experimentell erwiesen oder auf Grund langer Erfahrung genauso sicher wie Organismen der Risikogruppe 1 sind und daher entsprechend verwendet werden können,
 − eukaryote Zellen, die nicht spontan zu Organismen regenerieren, und geben keine Organismen der Risikogruppen 2 bis 4 ab,

2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 1 nicht überschreitet und keine GVO höherer Risikogruppen abgibt,

3) der GVO ist bei Verwendung im Reaktor oder Fermenter genauso sicher wie der Empfängerorganismus, aber mit begrenzter Überlebens- oder Replikationsfähigkeit und ohne nachteilige Folgewirkung für die Umwelt;

Gentechnische Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken sind der Sicherheitsstufe 2 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:

1) die Empfängerorganismen sind Organismen der Risikogruppe 2 und geben keine Organismen der Risikogruppe 3 oder 4 ab,

2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 2 nicht überschreitet und keine GVO höherer Risikogruppen abgibt;

Gentechnische Arbeiten mit Mikroorganismen und Zellkulturen zu Forschungszwecken sind der Sicherheitsstufe 3 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:

1) die Empfängerorganismen sind Organismen der Risikogruppe 3 und geben keine Organismen der Risikogruppe 4 ab,

2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 3 nicht überschreitet und keine GVO der Risikogruppe 4 abgibt.

Ebenfalls der Sicherheitsstufe 3 zuzuordnen sind gentechnische Arbeiten, die darauf gerichtet sind, hochwirksame Toxine herzustellen, wobei biologische Sicherheitsmaßnahmen zur Anwendung kommen. Die Zentrale Kommission für die Biologische Sicherheit kann unter Berücksichtigung der Wirkungsweise des hochwirksamen Toxins Empfehlungen aussprechen, welche biologischen Sicherheitsmaßnahmen hierfür im Einzelfall geeignet sind.

Gentechnische Arbeiten in gentechnischen Anlagen

Anhang 5: Zuordnung gentechnischer Arbeiten mit Tieren und Pflanzen zu Sicherheitsstufen gemäß § 7 GenTSV.

Gentechnische Arbeiten mit Tieren und Pflanzen sind der Sicherheitsstufe 1 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:
1) die Empfängerorganismen sind Tiere oder Pflanzen, von denen keine schädlichen Auswirkungen auf die Rechtsgüter nach § 1 Nr. 1 GenTG zu erwarten sind,
2) virale Vektoren sollen nicht horizontal übertragbar sein,
3) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO bei gentechnischen Arbeiten nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 1 nicht überschreitet und keine GVO höherer Risikogruppen abgibt;

Gentechnische Arbeiten mit Tieren und Pflanzen sind der Sicherheitsstufe 2 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:
1) die Empfängerorganismen sind Tiere oder Pflanzen, von denen höchstens ein geringes Risiko für die Rechtsgüter nach § 1 Nr. 1 GenTG zu erwarten ist,
2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO bei gentechnischen Arbeiten nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 2 nicht überschreitet und keine GVO höherer Risikogruppen abgibt;

Gentechnische Arbeiten mit Tieren und Pflanzen sind der Sicherheitsstufe 3 zuzuordnen, wenn sie die folgenden Voraussetzungen erfüllen:
1) die Empfängerorganismen sind Tiere oder Pflanzen, von denen höchstens ein mäßiges Risiko für die Rechtsgüter nach § 1 Nr. 1 Gentechnikgesetz zu erwarten ist,
2) Vektoren und aus dem Spenderorganismus überführte sowie synthetische Nukleinsäuren sind soweit charakterisiert, dass der GVO bei gentechnischen Arbeiten nach einer vorläufigen Risikobewertung nach § 5 Abs. 1 Satz 2 GenTSV das Gefährdungspotenzial von Organismen der Risikogruppe 3 nicht überschreitet und keine GVO der Risikogruppe 4 abgibt;

Gentechnische Arbeiten mit Tieren und Pflanzen sind der Sicherheitsstufe 4 zuzuordnen, wenn für gentechnische Arbeiten im Laborbereich die Voraussetzungen des § 7 Abs. 3 Nr. 4 GenTSV oder für gentechnische Arbeiten im Produktionsbereich die Voraussetzungen des § 7 Abs. 2 Nr. 2 Buchstabe c GenTSV erfüllt sind.
Anhang 6: Sicherheitsmaßnahmen für den Laborbereich gemäß Anhang III Teil A GenTSV.

(Die Anforderungen der niedrigen Stufen sind von den höheren eingeschlossen)

Stufe 1
1. Der Gentechnik-Arbeitsbereich ist als solcher und entsprechend der Sicherheitsstufe der gentechnischen Arbeiten, für die er zugelassen ist, zu kennzeichnen.
3. Oberflächen (Arbeitsflächen sowie die an die Arbeitsflächen angrenzenden Wandflächen und Fußböden) sollen leicht zu reinigen und müssen dicht und beständig gegen die verwendeten Stoffe und Reinigungsmittel sein.
4. Ein Waschbecken soll im Arbeitsbereich vorhanden sein.
8. Nach Beendigung der Tätigkeit und vor Verlassen des Arbeitsbereiches müssen die Hände ggf. desinfiziert, sorgfältig gewaschen und rückgefettet (Hautschutzplan) werden.

Stufe 2
1. Der Arbeitsbereich ist zusätzlich mit dem Warnzeichen "Biogefährdung" zu kennzeichnen.
2. Arbeiten mit gentechnisch veränderten Mikroorganismen der Risikogruppe 2 sollen so erfolgen, dass Atem- und Hautschutzmaßnahmen zur Verfügung stehen.
3. Steht eine Sicherheitswerkbank oder ein Abzug für die Beschäftigten zur Verfügung, muss dieser zur Arbeitsöffnung hin gerichtet sein.
4. Ein Autoklav muss innerhalb des Betriebsgeländes vorhanden sein.
8. Bei Arbeiten, bei denen Aerosole entstehen können, muss sichergestellt werden, dass diese nicht in den Arbeitsbereich gelangen. Dazu sind insbesondere folgende Maßnahmen geeignet:
 a) Durchführung der Arbeit in einer Sicherheitswerkbank oder unter einem Abzug, bei denen ein Luftstrom vom Experimentator zur Arbeitsöffnung hin gerichtet ist, oder
 b) Benutzung von Geräten, bei denen keine Aerosole freigesetzt werden,
Gentechnische Arbeiten in gentechnischen Anlagen

c) das Tragen geeigneter Schutzausrüstung, wenn technische und organisatorische Maßnahmen nicht ausreichen oder nicht anwendbar sind.
d) Die Abflut aus den unter Buchstabe a genannten Geräten muss durch einen Hochleistungsschwabstoff-Filter geführt oder durch ein anderes geprüftes Verfahren keimfrei gemacht werden. Die Funktionsfähigkeit der Geräte ist durch re-
gelmäßige Wartung sicherzustellen.

9. Ein Autoklav oder ein gleichwertiges Gerät zur Inaktivierung oder Sterilisierung muss im Labor vorhanden oder innerhalb
deselben Gebäudes verfügbar sein.

10. Abfälle, die gentechnisch veränderte Organismen enthalten, dürfen nur in geeigneten Behältern innerbetrieblich transpor-
tiert werden.

11. Gentechnisch veränderte Organismen dürfen nur in verschlossenen und gegen Bruch geschützten und bei Kontamination
von außen derart gezierten, gekennzeichneten Behältern innerbetrieblich transportiert werden.

12. Vor Reinigungs-, Instandsetzungs- und Änderungsarbeiten an kontaminierten Geräten oder Einrichtungen ist die Dekon-
tamination durch das Laborpersonal durchzuführen oder zu veranlassen.

14. Werden Organismen verschüttet, muss unverzüglich der kontaminierte Bereich gesperrt und desinfiziert werden. Die Anlagen
müssen von außen desinfizierten, gekennzeichneten Behältern innerbetrieblich transportiert werden.

sein.

17. Kontaminierte Prozessabflüsse, die in den Arbeitsbereich gegeben werden, muss durch geeignete Verfahren wie Filterung oder
thermische Nachbehandlung gereinigt werden. Dies gilt z. B. auch für die Abluft von Autoklaven, Pumpen oder Bioreaktio-
ren.

18. Gentechnisch veränderte Organismen der Risikogruppe 2 sind dicht verschlossen und sicher aufzubewahren.

Stufe 3

1. Das Labor muss von seiner Umgebung abgeschieden sein.

2. Fenster dürfen nicht zu öffnen sein.

3. In der Regel ist eine Schleuse einzurichten, über die das Labor zu betreten und zu verlassen ist. Die Schleuse ist mit zwei
selbstschließenden Türen auszustatten, die bei bestimmungsgemäßem Betrieb gegen einander verriegelt sind. Sie muss ei-
eine Händedesinfektionsvorrichtung enthalten. In der Regel ist in der Schleuse ein Handwaschbecken mit Ellenbogen-, Fuß-
or Sensorbetätigung einzurichten. In begründeten Einzelfällen kann auf eine Schleuse verzichtet werden. Falls erforder-
lieh, ist eine Dusche einzurichten.

geschlossene Schuhe und Schutzhandschuhe sind vom Betreiber bereitzuhalten. Die Schutzkleidung ist vor der Reinigung
oder der Beseitigung zu sterilisieren. Die Schutzkleidung umfasst einen an den Rumpfseiten sterilisierten Schutz-
kittel mit Kennzeichnung, geschlossene Schuhe, die entsprechend der Tätigkeit anzulegen sind, sowie in Abhängigkeit von
der Tätigkeit Mundschutz (Berührungsschutz).

7. Bei Arbeiten, bei denen Aerosole entstehen können, muss stets in Sicherheitswlrücken des Klass 0, I oder II gearbeitet
werden.

8. Der Zutritt zum Labor ist auf die Personen zu beschränken, deren Anwesenheit zur Durchführung der Versuche erforderlich
ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen.

10. Im Laborbereich anfallende zu sterilisierende Abwässer sind von außen desinfizierten Behältern innerbetrieblich transportiert
werden. Die Schutzkleidung umfasst einen an den Rumpfseiten sterilisierten Schutz-
kittel mit Kennzeichnung, geschlossene Schuhe, die entsprechend der Tätigkeit anzulegen sind, sowie in Abhängigkeit von
der Tätigkeit Mundschutz (Berührungsschutz).

11. Beim Wechseln von Filtern z. B. der lüftungstechnischen Anlage oder der Sicherheitswerkbank müssen diese entweder
am Einbauort sterilisiert oder zwecks späterer Sterilisierung durch ein geräteseits vorgesehenes Austauschsystem in einen
luftdichten Behälter verpackt werden, sodass eine Infektion des Wartungspersonals und anderer Personen ausgeschlossen
werden kann.

12. Die Kommunikation vom Labor nach außen muss eine geeignete Einrichtung vorhanden sein.

13. Gentechnisch veränderte Organismen dürfen nur in bruchsicheren, dicht verschlossenen, entsprechend gekennzeichneten
und außen desinfizierten Behältern innerbetrieblich transportiert werden.

Stufe 4

1. Das Labor muss entweder ein selbständiges Gebäude oder, als Teil eines Gebäudes, durch einen Flur oder Vorraum deut-
lisch von den allgemein zugänglichen Verkehrsflächen abgetrennt sein. Das Labor soll keine Fenster haben. Sind Fenster
vorhanden, müssen sie dicht, bruchsicher und dürfen nicht zu öffnen sein. Es müssen Maßnahmen getroffen werden, die
den unbeabsichtigten oder unerlaubten Betreten des Labors verhindern. Alle Türen des Labors müssen selbstschließend
sein. Die Arbeitsräume des Labors dürfen nur durch eine dreikammerige Schleuse betreten werden können.

2. Die Schleuse muss gegen den Vorraum und die Arbeitsräume mit einer entsprechenden Druckstaffelung versehen sein, um
dem Austritt von Luft aus dem isolierten Laborteil zu verhindern. Die mittlere Kammer der Schleuse muss mit zwei
selfschließenden Türen ausgestattet, die bei bestimmungsgemäßem Betrieb gegeneinander verriegelt sind. Sie muss ei-
eine Händedesinfektionsvorrichtung enthalten. Eine Einrichtung zum Einbringen großräumiger Geräte oder Einrichtungsgegenstände
enthalten. Einrichtung zum Einbringen großräumiger Geräte oder Einrichtungsgegenstände ist vorzusehen.

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit 89

9. Im Labor muss ein mit Ellbogen, Fuß oder Sensor zu betätigendes Handwaschbecken mit Desinfektionseinrichtungen oder ein besonderes Becken mit Desinfektionslösung zum Desinfizieren der Hände vorhanden sein. Es ist eine laborinterne Arbeitvorschrift für die notwendigen Desinfektionsmaßnahmen zu erlassen.

10. Für alle Arbeiten mit humanpathogenen Organismen gelten zusätzlich die folgenden Sicherheitsmaßnahmen:

 – Die Ventile des Lüftungssystems müssen stromlos in einen sicheren Zustand gelangen.

 – Zentrifugen, in denen Organismen zentrifugiert werden, mit denen nur unter den Bedingungen der Sicherheitsstufe 4 gearbeitet werden darf, dürfen nur in vergleichbaren Sicherheitswerkbänken betrieben werden oder sind entsprechend zu umbauen.

11. Im Labor darf niemals eine Person allein tätig sein, es sei denn, es besteht eine kontinuierliche Sichtverbindung oder Kameraüberwachung. Eine Wechselsprechlanche nach draußen oder eine Telefonverbindung muss vorhanden sein.

Anhang 7: Sicherheitsmaßnahmen für den Produktionsbereich gemäß Anhang III Teil B GenTSV.

(Die Anforderungen der niedrigen Stufen sind von den höheren eingeschlossen)

Stufe 1
1. Die Laborsicherheitsmaßnahmen der Stufe 1 gelten für die Produktion sinngemäß.
2. In Abhängigkeit von ihren Eigenschaften müssen lebensfähige Mikroorganismen oder Zellkulturen in einem System eingeschlossen sein, das den Prozess von der Umwelt trennt (Fermenter).
3. Im Rahmen der Regeln guter mikrobiologischer Technik kommt der Vermeidung von Aerosolen besondere Bedeutung zu. Um zu verhindern, dass größere Mengen an Kultursuspensionen über die Abluft aus den technischen Apparaturen austreten, können z. B. folgende Maßnahmen getroffen werden:
 - Füllung der Fermenter bis max. 80 % und/oder - Überwachung der Schaumbildung durch Sensoren und kontinuierliche oder geregelte Zugabe von Antischauummitteln und/oder
 - Falls erforderlich, sind Aerosole während der Probenahme, der Zugabe von Material in einen Fermenter oder der Übertragung von Material in einen anderen Fermenter zu kontrollieren.
4. Falls erforderlich, sind spezifische Maßnahmen zur angemessenen Belüftung des Arbeitsbereichs anzuwenden, um die Kontamination der Luft auf ein Mindestmaß zu reduzieren.
5. Zur Wellenabdichtung sind Stopfbuchsen ausreichend.
6. Falls erforderlich, sind große Mengen an Kulturflüssigkeit, bevor sie aus dem Fermenter genommen werden, zu inaktivieren.
7. Falls erforderlich, muss der Arbeitsbereich so ausgelegt sein, dass bei Austreten des gesamten Inhalts des Fermenters dieser aufgefangen werden kann.

Stufe 2
1. Der Arbeitsbereich ist zusätzlich mit dem Warnzeichen "Biogefährdung" zu kennzeichnen.
2. Falls erforderlich, müssen die Fermenter innerhalb eines kontrollierten Bereichs liegen.
3. Falls erforderlich, muss der kontrollierbare Bereich abdichtbar sein, um eine Begasung zu ermöglichen.
4. Der Zutritt ist nur autorisierten Personen erlaubt.
5. Ausreichende Sterilisationskapazität muss im Gebäude vorhanden sein.
6. An den Waschbecken müssen Direktspender mit Händedesinfektionsmitteln zur Verfügung stehen.
7. Die technischen Apparaturen sind konstruktionsmäßig so auszulegen, dass Aerosolbildung und Undichtigkeiten vermieden werden.

Zur Sicherstellung, dass keine Aerosole in den Arbeitsbereich gelangen, sind insbesondere folgende Maßnahmen geeignet:

a) bei der Verwendung von Zentrifugen und Separatoren
 - Betreiben der Zentrifuge in Abzügen mit Abluftfilter oder Sicherheitswerkbanken,
 - Verwendung dichter Zentrifugen (z. B. kontinuierlich betriebene in-line-Geräte),
 - Verwendung eines Rotors mit dicht schließendem Deckel, Verwendung bruchsicherer und geschlossener Zentrifugeneinsätze oder -gefäße oder
 - Einstellung nicht bruchsicherer Zentrifugengefäße in geschlossene und bruchsichere Einsätze,

b) bei der Verwendung von Homogenisatoren
 - besondere Konstruktionsmerkmale wie Abdichten des Deckels mit einem O-Ring, geeignete Werkstoffe für Schüssel und Deckel,
 - Betrieb und insbesondere Öffnen der Geräte in Abzügen oder Sicherheitswerkbanken oder
 - Verwendung kontinuierlich betriebener in-line-Geräte.

Diese Maßnahmen sind beim Betrieb von Geräten, die der Erreichung eines vergleichbaren Zieles dienen und an die deshalb dieselben Anforderungen zu stellen sind, sinngemäß anzuwenden.

8. Lebensfähige Mikroorganismen müssen in einem System eingeschlossen sein, das den Prozess von der Umwelt trennt (z. B. Fermenter). Um das Austreten von gentechnisch veränderten Organismen über die Fermenterabluft auf ein Minimum zu beschränken, können verwendet werden:
 - Zentrifugalabscheider,
 - Venturi-Wäscher,
 - Demister,
 - Tiefenfilter,
 - Maßnahmen zur Schaumkontrolle (chemisch, mechanisch).
 - Kontaminierte Prozessabluft, die in den Arbeitsbereich gegeben wird, muss durch geeignete Verfahren wie Filterung oder thermische Nachbehandlung gereinigt werden. Dies gilt z. B. auch für die Abluft von Autoklaven, Pumpen oder Bioreaktoren.

9. Werden Lösungen, die gentechnisch veränderte Organismen enthalten, verschüttet, sind die verunreinigten Bereiche unverzüglich zu desinfizieren.

10. Dichtungen müssen so beschaffen sein, dass das unbeabsichtigte Entweichen von gentechnisch veränderten Organismen auf ein Mindestmaß reduziert wird. Für Wellendurchführungen sind die folgende Abdichtungen geeignet:
 - einfach wirkende Gleitringdichtung,
 - Stopfbuchse mit Dampf- oder Desinfektionsmittelpresse.

11. Arbeiten, bei denen Aerosole in den Arbeitsbereich austreten können, müssen in einer Sicherheitswerkbank der Klasse I oder II oder unter einem Abzug mit Hochleistungsschwebstoff-Filter durchgeführt werden. Die Oberfläche der Sicherheits-
Die Arbeitsräume des Produktionsbereichs dürfen nur durch eine dreikammerige Schleuse betreten werden. Die Stufe 4

Für das Arbeiten mit gentechnisch veränderten Organismen ist ein Hygieneplan zu erstellen. Die Schutzkleidung darf nicht außerhalb der Arbeitsräume getragen werden.

Stufe 3

1. Der Arbeitsbereich muss von seiner Umgebung abgeschirmt sein. Der Zugang zum Arbeitsbereich ist nur autorisierten und über die Sicherheitsanforderungen belehrten Personen gestattet.

3. Sofern mit pathogenen Organismen gearbeitet wird, für die eine Übertragung durch die Luft nicht ausgeschlossen werden kann, muss der Produktionsbereich unter ständigem, durch Alarmgeber kontrollierbarem Unterdruck gehalten und die Abluft über Hochleistungsschwebstoff-Filter geführt werden. Die Rückführung kontaminiertzer Abluft ist unter der Luftverhältnisse nicht erforderlich.

5. In der Schleuse ist geeignete Schutzkleidung anzulegen. Die Schneideinrichtung muss eine Notstromversorgung haben.

7. Der Arbeitsbereich muss mit einer technischen Lüftung ausgestattet sein, wobei die Filterung der Raumabluft in der Regel nicht erforderlich ist.

11. Dichtungen müssen so beschaffen sein, dass durch Auffangvorrichtungen, deren Volumina sich mindestens am größten Einzelvolumen orientieren, ein unkontrollierter Austritt verhindert wird. Die Dichtungen sind die verunreinigten Teile der Schutzkleidung nicht erforderlich.

Stufe 4

92 Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit
3. Fenster, Wände, Decken und Fußböden müssen nach außen dicht sein. Fenster dürfen sich im Normalbetrieb nicht öffnen lassen.
4. Im Arbeitsbereich muss ein Unterdruck durch geeignete Lüftungssysteme gewährleistet sein. Der Unterdruck ist durch ein Messgerät mit Alarmanlage laufend zu überwachen.
6. Die Anlage ist so auszulegen, dass die gesamte Abwassermenge aus Fermenter und Abläufen aufgefangen und sterilisiert werden kann.
11. Der kontrollierte Bereich muss abdichtbar sein, um eine Begasung zu ermöglichen.
Gentechnische Arbeiten in genterchnischen Anlagen

Anhang 8: Sicherheitsmaßnahmen für Gewächshäuser gemäß Anhang IV GenTSV.

Die Sicherheitsmaßnahmen gelten sinngemäß für Klimakammern. Die Anforderungen der niedrigeren Stufen werden von den höheren Stufen eingeschlossen. Sofern in Gewächshäusern mit gentechnisch veränderten Mikroorganismen gearbeitet wird, gelten sinngemäß zusätzlich die Anforderungen des Anhangs III für Laboratorien der entsprechenden Sicherheitsstufe.

Stufe 1
1. Der Gentechnik-Arbeitsbereich ist als solcher zu kennzeichnen.
5. Ein geeignetes, auf die Experimentalpflanzen abgestimmtes Programm zur erfolgreichen Bekämpfung von Pflanzenkrankheiten, Unkräutern, Insektenbefall und Nagetieren ist aufzustellen.
7. Verletzungen sind dem Projektleiter unverzüglich zu melden.

Stufe 2
5. Arbeitsgeräte, die in unmittelbarem Kontakt mit gentechnisch veränderten Organismen waren, müssen vor einer Reinigung autoklaviert oder desinfiziert werden, wenn bei diesem Kontakt gentechnisch veränderte Organismen übertragen werden können.
6. Gentechnisch veränderte Organismen dürfen nur in verschlossenen und gegen Bruch geschützten Behältern innerbetrieblich transportiert werden.
7. Eine Händedesinfektionsmöglichkeit muss vorhanden sein.

Stufe 3
1. Der Fußboden des Gewächshauses ist aus wasserundurchlässigem Material mit Vorkehrungen zur Sammlung und Sterilisierung der Abwässer auszuführen. Dies ist nicht erforderlich, wenn die Experimentalpflanzen in geschlossenen Systemen kultiviert werden, bei denen eine Sammlung und Sterilisierung des Abwassers möglich ist.

5. Die Gewächshausanlage ist mit einem Sicherheitszaun zu umgeben oder durch ein gleichwertiges Sicherheitssystem zu schützen.

10. Der Zutritt zum Gewächshaus ist auf die Personen zu beschränken, deren Anwesenheit zur Durchführung der Versuche erforderlich ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen.

11. Ein Autoklav oder eine gleichwertige Sterilisationseinheit muss im Gewächshaus vorhanden sein.

Stufe 4

1. Das Gewächshaus muss entweder aus einem separaten Gebäude oder einer klar abgegrenzten Zone innerhalb eines Gebäudes bestehen.

2. Im Gewächshaus muss durch geeignete Lüftungssysteme ein Unterdruck gewährleistet sein.

3. Die Zugangstüren zum Gewächshaus sind selbstschließend und abschließbar auszuführen. Für die ein- und austretenden Beschäftigten müssen durch eine Dusche getrennte äußere und innere Umkleideräume zur Verfügung stehen.

5. Die Gewächshausanlage ist mit einem Sicherheitszaun zu umgeben oder durch ein gleichwertiges Sicherheitssystem zu schützen.

10. Der Zutritt zum Gewächshaus ist auf die Personen zu beschränken, deren Anwesenheit zur Durchführung der Versuche erforderlich ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen.

11. Ein Autoklav oder eine gleichwertige Sterilisationseinheit muss im Gewächshaus vorhanden sein.

Stufe 4

1. Das Gewächshaus muss entweder aus einem separaten Gebäude oder einer klar abgegrenzten Zone innerhalb eines Gebäudes bestehen.

2. Im Gewächshaus muss durch geeignete Lüftungssysteme ein Unterdruck gewährleistet sein.

3. Die Zugangstüren zum Gewächshaus sind selbstschließend und abschließbar auszuführen. Für die ein- und austretenden Beschäftigten müssen durch eine Dusche getrennte äußere und innere Umkleideräume zur Verfügung stehen.

5. Die Gewächshausanlage ist mit einem Sicherheitszaun zu umgeben oder durch ein gleichwertiges Sicherheitssystem zu schützen.

10. Der Zutritt zum Gewächshaus ist auf die Personen zu beschränken, deren Anwesenheit zur Durchführung der Versuche erforderlich ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen.

11. Ein Autoklav oder eine gleichwertige Sterilisationseinheit muss im Gewächshaus vorhanden sein.

ten innerhalb der Anlage zur Innentür des Autoklaven, der Begasungskammer oder der Schleuse zu gehen. Diese Türen sind zu sichern, nachdem das Material in die Anlage verbracht worden ist.

13. Gliederfüßer und andere Makroorganismen, die im Zusammenhang mit Versuchen benutzt werden, die eine physikalische Einschließung dieser Sicherheitsstufe erfordern, sind in entsprechenden Behältern unterzubringen. Soweit es der Organismus erforderlich macht, sind die Versuche in den Behältern, in denen die beweglichen Organismen festgehalten werden, durchzuführen.

15. Unfälle im Gewächshaus, die eine unbeabsichtigte Freisetzung oder Streuung von Mikroorganismen zur Folge haben, sind unverzüglich dem Projektleiter und den jeweils zuständigen Behörden zu melden. Über diese Unfälle sind schriftliche Aufzeichnungen anzufertigen und aufzubewahren.

Anhang 9: Sicherheitsmaßnahmen für Tierhaltungsräume gemäß Anhang V GenTSV.

Die Anforderungen der niedrigen Stufen sind von den höheren eingeschlossen. Sofern in Tierhaltungsräumen mit gentechnisch veränderten Mikroorganismen gearbeitet wird, gelten sinngemäß zusätzlich die Anforderungen des Anhangs III für Laboratorien der entsprechenden Sicherheitsstufe.

Stufe 1
1. Sofern erforderlich, ist eine Abschirmung der Tieranlage (Gebäude oder abgetrennter Bereich innerhalb eines Gebäudes mit Tierhaltungsräumen und anderen Bereichen wie Umkleideräumen, Duschen, Autoklaven, Futterlagerräumen usw.) vorzunehmen.
3. Der Zutritt zur Raum ist auf hierzu ermächtigte Personen zu beschränken.
4. Es soll geeignete Schutzkleidung und geeignetes Schuhwerk getragen werden, die bei Verlassen des Tierhaltungsräums zu säubern oder abzulegen sind. Schutzkleidung und Schuhwerk sind vom Betreiber bereitzustellen.
5. Die Tierhaltungsräume müssen in Abhängigkeit von der Belegungsdichte ausreichend belüftet sein.
6. Die Tierhaltungsräume müssen für die beherbergten Tiere fluchtsicher und abschließbar sein.
7. Tiere sind in Tierkäfigen oder anderen für die Tierart geeigneten Einrichtungen unterzubringen.
10. Mundpipettieren ist untersagt; Pipettierhilfen sind zu benutzen.
11. Bei allen Arbeiten muss darauf geachtet werden, das Aerosolbildung so weit wie möglich vermieden wird.
12. Es sollen Maßnahmen ergriffen werden, um eine Fortpflanzung der Tiere zu verhindern, sofern nicht die Reproduktion Teil des Experiments ist.
13. Alle Tiere müssen leicht und versuchsbezogen zu identifizieren sein.
17. Ungeziefer ist in geeigneter Weise zu bekämpfen.
19. Im Tierhaltungsraum darf nicht gegessen, getrunken, geraucht oder geschnupft werden. Für die Beschäftigten sind Bereiche einzurichten, in denen sie ohne Beeinträchtigung ihrer Gesundheit durch gentechnisch veränderte Organismen essen, trinken, rauchen oder schnupfen können.
20. Tierkäfige und andere Einrichtungen sind nach Gebrauch zu reinigen.

Stufe 2
1. Alle Tiere sind in umschlossenen und abschließbaren Räumlichkeiten (Tierhaltungsräume o.Ä.) zu halten, um die Möglichkeit eines Diebstahls oder unbeabsichtigter Freisetzung auszuschalten. Die Räumlichkeiten sind zusätzlich mit dem Warnzeichen "Biogefährdung" zu kennzeichnen.
2. Der Tierhaltungsraum muss ein gesondertes Gebäude oder ein eindeutig abgegrenzter und räumlich abgetrennter Bereich innerhalb eines Gebäudes sein.
3. Befinden sich infizierte Tiere im Tierhaltungsraum, muss die Tür geschlossen bleiben. Sie ist mit einem Hinweis zu versehen, der auf die Art der Arbeiten hinweist.
5. Bei Arbeiten, bei denen Aerosole entstehen können, sind folgende Maßnahmen zu treffen:
 a. Durchführung der Arbeiten in einer Sicherheitswerkbank oder unter einem Abzug, bei denen ein Luftstrom vom Experimentator zur Arbeitsöffnung hin gerichtet ist,
 b. Benutzung von Geräten, bei denen keine Aerosole freigesetzt werden, oder
Gentechnische Arbeiten in gentechnischen Anlagen

c. das Tragen geeigneter Schutzausrüstung, wenn technische und organisatorische Maßnahmen nicht ausreichen oder nicht anwendbar sind. Die Abluft aus den unter den Buchstaben a und b genannten Geräten muss durch einen Hochleistungsschwebstoff-Filter geführt oder durch ein anderes geeignetes Verfahren keimfrei gemacht werden.

7. Gentechnisch veränderte Organismen dürfen nur in verschlossenen, gegen Bruch geschützten und bei Kontamination von außen desinfizierbaren, gekennzeichneten Behältern innerbetrieblich transportiert werden.

8. Für das Arbeiten mit gentechnisch veränderten Organismen ist ein Hygieneplan zu erstellen.

10. Arbeitsflächen sind nach Beendigung der Tätigkeit zu desinfizieren.

11. Arbeitsgeräte, die in unmittelbarem Kontakt mit gentechnisch veränderten Organismen waren, müssen vor einer Reinigung, Wartung oder Reparatur autoklaviert oder desinfiziert werden, wenn bei diesem Kontakt gentechnisch veränderte Organismen übertragen werden können.

12. Tierkäfige und andere Einrichtungen sind nach Gebrauch zu desinfizieren.

13. Abfälle, die gentechnisch veränderte Organismen enthalten, dürfen nur in geeigneten Behältern innerbetrieblich transportiert werden.

15. Sofern erforderlich, sollten Filter an Isolatoren oder isolierten Räumen vorgesehen werden.

16. Einrichtungen zur Immobilisierung zwecks gefahrloser Handhabung infizierter oder zu infizierender Tiere sind bereitzuhalten. Eine Sicherheitsbeleuchtung ist für Arbeitsplätze mit besonderer Gefährdung für den Fall vorzusehen, dass die Allgemeinbeleuchtung ausfällt (Befriedung der Tiere).

Stufe 3

1. In den Tierhaltungsräumen müssen
 a. in der Regel eine Schleuse vorhanden sein, über die der Tierhaltungsraum zu betreten und zu verlassen ist. Die Schleuse ist mit der Regel eine Schleuse vorhanden sein, über die der Tierhaltungsraum zu betreten und zu verlassen ist. Die Schleuse ist mit zwei sich öffnenden Türen auszustatten, die bei bestimmungsgemäßem Betrieb gegen die einwandernd reagieren; sie muss eine Händedesinfektionsvorrichtung enthalten. In der Regel ist die Schleuse ein Handwaschbecken mit Ellenbogen-, Fuß- oder Sensortätigkeit einzurichten. In begründeten Einzelfällen ist eine Dusche einzurichten.
 b. nicht zu öffnende Fenster,
 c. Übergangslose Fußleisten, der Zutritt zum Tierhaltungsraum ist auf die Personen zu beschränken, deren Anwesenheit für die Durchführung der Versuche erforderlich ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen. Die Anwesenheit der Personen ist zu dokumentieren. Eine Person darf nur dann allein im Tierhaltungsraum arbeiten, wenn die Handhabung der Versuchstiere allein sicher beherrschbar ist und eine von innen zu betätigende Alarmanlage oder ein anderes geeignetes Überwachungssystem vorhanden ist.
 d. Notstromversorgung für sicherheitsrelevante Einrichtungen (z. B. Lüftungsanlage, Isolator),
 e. Gasnotschalter,
 f. sofern mit pathogenen Organismen gearbeitet wird, für die eine Übertragung durch die Luft nicht ausgeschlossen werden kann, ständig, durch Alarmgeber kontrollierbarer Unterdruck und Hochleistungsschwebstoff-Filter zur Filtration der Abluft,
 g. (weggefallen)
 h. ein Autoklav oder eine gleichwertige Sterilisationseinheit,
 i. geeignete Einrichtungen zur Verhinderung des Eindringens von Insekten, Nagern und Vögeln,
 j. (weggefallen)
 vorhanden sein.

2. Der Zutritt zum Tierhaltungsraum ist auf die Personen zu beschränken, deren Anwesenheit für die Durchführung der Versuche erforderlich ist und die zum Eintritt befugt sind. Der Projektleiter ist verantwortlich für die Bestimmung der zutrittsberechtigten Personen. Die Anwesenheit der Personen ist zu dokumentieren. Eine Person darf nur dann allein im Tierhaltungsraum arbeiten, wenn die Handhabung der Versuchstiere allein sicher beherrschbar ist und eine von innen zu betätigende Alarmanlage oder ein anderes geeignetes Überwachungssystem vorhanden ist.

4. Gentechnisch veränderte Organismen dürfen nur in bruchsicheren, dicht verschlossenen, entsprechend gekennzeichneten Behältern innerbetrieblich transportiert werden.

6. Bei der Entsorgung von Tierkadavern und Tiermaterial ist folgendes zu beachten:
 a. Tierkadaver und Tiermaterial sind vor der Entsorgung zu sterilisieren.
 b. Ist dies im Tierhaltungsraum nicht möglich, hat der Transport in dicht geschlossenen, bruchsicheren, leckssicheren und außen desinfizierten Behältern innerbetrieblich transportiert werden.
 c. Die Sterilisierung hat durch Verbrennen oder eine andere geeignete Weise zu erfolgen, wobei sichergestellt sein muss, dass auch die Kernschichten des Tierkadavers und Tiermaterial erfasst werden.

9. Filter an Isolatoren oder isolierten Räumen (durchsichtige Behälter, in denen kleine Tiere innerhalb oder außerhalb eines Käfigs gehalten werden; für große Tiere können isolierte Räume angebracht sein) sind vorzusehen.

Stufe 4

1. Es muss entweder ein gesonderter Tierhaltungsraum oder ein eindeutig abgegrenzter und räumlich abgetrennter Bereich innerhalb eines Gebäudes zur Verfügung stehen. Die Zugangstüren zum Bereich sind selbstschließend und abschließbar auszuführen.

5. Für die Desinfektion von Materialien, die aus dem Bereich ausgeschleust werden muss, eine desinfizierbare Schleuse zur Verfügung stehen. Die Desinfektion kann z. B. durch Dampf, chemische Mittel oder energiereiche Strahlung erfolgen.

6. Die im Tierhaltungsraum benötigten Materialien, Gegenstände und Tiere sind über Schleusen, Begasungskammern oder Durchreicheautoklaven mit Einrichtungen zur Desinfektion einzubringen. Vor und nach dem Einschleusen ist die Schleuse zu desinfizieren.

8. Alle übrigen Materialien müssen vor der Entfernung aus dem Tierhaltungsräum sterilisiert oder durch eine gleichwertige Behandlung desinfiziert werden. Ist dies nicht möglich, muss das Material in einem geschlossenen, bruchsicheren, lecksicheren Primärbehältnis verpackt und in einem desinfizierten, versiegelten Transportbehältnis zur Entsorgung verbracht werden.

11. Im Übrigen müssen die Sicherheitsmaßnahmen denjenigen für ein Labor der Sicherheitsstufe 4 entsprechen.
Verzeichnis der Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>als Nukleotidbaustein der DNA: Desoxyadenosinmonophosphat</td>
</tr>
<tr>
<td>AAV</td>
<td>Adeno-assoziiertes Virus</td>
</tr>
<tr>
<td>ABAS</td>
<td>Ausschuss für Biologische Arbeitsstoffe</td>
</tr>
<tr>
<td>acatech</td>
<td>Deutsche Akademie der Technikwissenschaften</td>
</tr>
<tr>
<td>AM</td>
<td>Ausschuss Methodenentwicklung (der LAG)</td>
</tr>
<tr>
<td>AR</td>
<td>Ausschuss Recht (der LAG)</td>
</tr>
<tr>
<td>ArbMedVV</td>
<td>Verordnung zur arbeitsmedizinischen Vorsorge</td>
</tr>
<tr>
<td>ASU</td>
<td>Amtliche Sammlung von Untersuchungsverfahren</td>
</tr>
<tr>
<td>BAuA</td>
<td>Bundesanstalt für Arbeitsschutz und Arbeitsmedizin</td>
</tr>
<tr>
<td>BBS</td>
<td>Beauftragter für die Biologische Sicherheit</td>
</tr>
<tr>
<td>BGenTGKostV</td>
<td>Bundeskostenverordnung zum Gentechnikgesetz</td>
</tr>
<tr>
<td>BGA</td>
<td>Bundesgesundheitsamt</td>
</tr>
<tr>
<td>BGV</td>
<td>Berufsgenossenschaftliche Vorschrift</td>
</tr>
<tr>
<td>BioStoffV</td>
<td>Biostoffverordnung</td>
</tr>
<tr>
<td>BMELV</td>
<td>Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz</td>
</tr>
<tr>
<td>BVL</td>
<td>Bundesamt für Verbraucherschutz und Lebensmittelsicherheit</td>
</tr>
<tr>
<td>CeHV-1</td>
<td>Cercopithecines Herpesvirus 1 (auch Herpes B Virus genannt)</td>
</tr>
<tr>
<td>C</td>
<td>als Nukleotidbaustein der DNA: Desoxycytidinmonophosphat</td>
</tr>
<tr>
<td>DENV</td>
<td>Denguevirus</td>
</tr>
<tr>
<td>DFG</td>
<td>Deutsche Forschungsgemeinschaft</td>
</tr>
<tr>
<td>DNA</td>
<td>englisch: deoxyribonucleic acid (siehe DNS)</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td>EG</td>
<td>Europäische Gemeinschaft</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohämorrhagische E. coli</td>
</tr>
<tr>
<td>et al.</td>
<td>lateinisch: et alii (und andere)</td>
</tr>
<tr>
<td>EWG</td>
<td>Europäische Wirtschaftsgemeinschaft</td>
</tr>
<tr>
<td>FwDV</td>
<td>Feuerwehr Dienstvorschrift</td>
</tr>
<tr>
<td>G</td>
<td>als Nukleotidbaustein der DNA: Desoxyguanosinmonophosphat</td>
</tr>
<tr>
<td>GAA</td>
<td>Gewerbeaufsichtsamt</td>
</tr>
</tbody>
</table>
Gentechnische Arbeiten in gentechnischen Anlagen

GenTAnhV Gentechnik-Anhörungsverordnung
GenTAufzV Gentechnik-Aufzeichnungsverordnung
GenTBetV Gentechnik-Beteiligungsverordnung
GenTG Gentechnikgesetz
GenTNotV Gentechnik-Notfallverordnung
GenTPfIEV Gentechnik-Pflanzenerzeugungsverordnung
GenTSV Gentechnik-Sicherheitsverordnung
GenTVPfEV Gentechnik-Verfahrensverordnung
GFV Gelbfiebervirus
GLP englisch: good laboratory practice (gute Laborpraxis)
GVO gentechnisch veränderter Organismus
HBV Hepatitis B Virus
HCV Hepatitis C Virus
HEV Hepatitis E Virus
HGV Hepatitis G Virus
HIV Humanes Immundefizienzvirus
HSV Herpes-simplex-Virus
HTLV Humanes T-Zell-Leukämie-Virus
HVS Herpesvirus saimiri
JEV Japanisches Enzephalitis-Virus
LAG Bund/Länder-Arbeitsgemeinschaft Gentechnik
LfU Bayerisches Landesamt für Umwelt (früher: Umweltschutz)
LGL Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit
MKSV Maul- und Klauenseuche-Virus
mob Mobilisierungsgene
mRNA englisch: messenger RNA (Boten-RNA)
MVA Modifiziertes Vacciniavirus Ankara
NAS englisch: National Academy of Science (Akademie der Wissenschaften)
NIH englisch: National Institutes of Health (Nationale Gesundheitsinstitute)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIV5</td>
<td>Parainfluenzavirus Typ 5</td>
</tr>
<tr>
<td>PL</td>
<td>Projektleiter</td>
</tr>
<tr>
<td>PSA</td>
<td>Persönliche Schutzausrüstung</td>
</tr>
<tr>
<td>RAC</td>
<td>englisch: Recombinant DNA Advisory Committee (entspricht der ZKBS)</td>
</tr>
<tr>
<td>rDNA</td>
<td>rekombinante DNA</td>
</tr>
<tr>
<td>RG1</td>
<td>Risikogruppe 1</td>
</tr>
<tr>
<td>RG2</td>
<td>Risikogruppe 2</td>
</tr>
<tr>
<td>RG3</td>
<td>Risikogruppe 3</td>
</tr>
<tr>
<td>RG3**</td>
<td>Risikogruppe 3**</td>
</tr>
<tr>
<td>RG4</td>
<td>Risikogruppe 4</td>
</tr>
<tr>
<td>RNA</td>
<td>englisch: ribonucleic acid (siehe RNS)</td>
</tr>
<tr>
<td>RNS</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>ROB</td>
<td>Regierung von Oberbayern</td>
</tr>
<tr>
<td>ROB-GAA</td>
<td>Gewerbeaufsichtsamt an der Regierung von Oberbayern</td>
</tr>
<tr>
<td>RUFr</td>
<td>Regierung von Unterfranken</td>
</tr>
<tr>
<td>RUFr-GAA</td>
<td>Gewerbeaufsichtsamt an der Regierung von Unterfranken</td>
</tr>
<tr>
<td>SIN</td>
<td>englisch: self-inactivating (selbst inaktivierend)</td>
</tr>
<tr>
<td>SIV</td>
<td>englisch: simian immunodeficiency virus (Immundefizienzvirus der Affen)</td>
</tr>
<tr>
<td>spp.</td>
<td>lateinisch: species pluralis (mehrere, nicht im Einzelnen zu nennende Spezies einer Gattung)</td>
</tr>
<tr>
<td>SRV</td>
<td>englisch: simian retrovirus (Retrovirus der Affen)</td>
</tr>
<tr>
<td>STLV</td>
<td>englisch: simian T-cell leukemia virus (T-Zell Leukämievirus der Affen)</td>
</tr>
<tr>
<td>StMUV</td>
<td>Bayerisches Staatsministerium für Umwelt und Verbraucherschutz</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian-Virus 40</td>
</tr>
<tr>
<td>S1</td>
<td>bei gentechnischen Arbeiten: Sicherheitsstufe 1</td>
</tr>
<tr>
<td>S2</td>
<td>bei gentechnischen Arbeiten: Sicherheitsstufe 2</td>
</tr>
<tr>
<td>S3</td>
<td>bei gentechnischen Arbeiten: Sicherheitsstufe 3</td>
</tr>
<tr>
<td>S4</td>
<td>bei gentechnischen Arbeiten: Sicherheitsstufe 4</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>T</td>
<td>als Nukleotidbaustein der DNA: Desoxythymidinmonophosphat</td>
</tr>
<tr>
<td>Tat</td>
<td>Transaktivator der Transkription</td>
</tr>
<tr>
<td>TMV</td>
<td>Tabakmosaikvirus</td>
</tr>
<tr>
<td>tra</td>
<td>Transferrgene</td>
</tr>
<tr>
<td>TRBA</td>
<td>Technische Regeln für Biologische Arbeitsstoffe</td>
</tr>
<tr>
<td>VZV</td>
<td>Varizella-Zoster Virus</td>
</tr>
<tr>
<td>WHO</td>
<td>englisch: World Health Organization (Weltgesundheitsorganisation)</td>
</tr>
<tr>
<td>XMRV</td>
<td>englisch: xenotropic murine leukemia virus-related virus</td>
</tr>
<tr>
<td>ZFN</td>
<td>Zinkfinger-Nuklease</td>
</tr>
<tr>
<td>ZKBS</td>
<td>Zentrale Kommission für die Biologische Sicherheit</td>
</tr>
<tr>
<td>ZKBSV</td>
<td>ZKBS-Verordnung</td>
</tr>
<tr>
<td>ZustVGenT</td>
<td>Gentechnik-Zuständigkeitsverordnung</td>
</tr>
</tbody>
</table>
Links

Richtlinien, Gesetze und Verordnungen:

Biostoffverordnung (BioStoffV):

Bundeskostenverordnung zum Gentechnikgesetz (BGenTGKostV):
http://www.gesetze-im-internet.de/bgentgkostv/

EU-Richtlinie 2000/54/EG (Arbeitnehmerschutzrichtlinie):

EU-Richtlinie 2001/18/EG (Freisetzungsrichtlinie):

EU-Richtlinie 2009/41/EG (Systemrichtlinie):

Gentechnikgesetz (GenTG):
http://www.gesetze-im-internet.de/gentg/

Gentechnik-Anhörungsverordnung (GenTAnhV):
http://www.gesetze-im-internet.de/gentanhv/

Gentechnik-Aufzeichnungsverordnung (GenTAufzV):
http://www.gesetze-im-internet.de/gentaufzv/

Gentechnik-Beteiligungsverordnung (GenTBetV):
http://www.gesetze-im-internet.de/gentbetv/

Gentechnik-Notfallverordnung (GenTNotfV):
http://www.gesetze-im-internet.de/gentnotf/

Gentechnik-Pflanzenerzeugungsverordnung (GenTPflEV):
http://www.gesetze-im-internet.de/gentpflev/

Gentechnik-Sicherheitsverordnung (GenTSV):
http://www.gesetze-im-internet.de/gentsv/

Gentechnik-Verfahrensverordnung (GenTVfV):

Gentechnik-Zuständigkeitsverordnung (ZustVGenT):

TRBA 100:

ZKBS-Verordnung (ZKBSV):
http://www.gesetze-im-internet.de/zkbsv/
Behörden und Institutionen

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL):
http://www.lgl.bayern.de

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (StMUV):
http://www.stmuv.bayern.de

Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG):
http://www.lag-gentechnik.de

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL):
http://www.bvl.bund.de/

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA):
http://www.baua.de/

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV):
http://www.bmelv.de/

Regierung von Oberbayern (ROB):
http://www.regierung.oberbayern.bayern.de

Regierung von Unterfranken (RUFr):
http://www.regierung.unterfranken.bayern.de

Zentrale Kommission für die Biologische Sicherheit (ZKBS):
http://www.bvl.bund.de/DE/06_Gentechnik/02_Verbraucher/05_Institutionen_fuer_biologische_Sicherheit/02_ZKBS/gentechnik_zkbs_node.html

Datenbanken

Allgemeine Stellungnahmen der ZKBS:
http://www.bvl.bund.de/DE/06_Gentechnik/03_Antragsteller/06_Institutionen_fuer_biologische_Sicherheit/01_ZKBS/01_Allg_Stellungnahmen/gentechnik_zkbs_allgStellungnahmen_node.html

Onkogen-Datenbank:
http://apps2.bvl.bund.de/oncogene/protected/main/oncoGene.do

Organismenliste:
http://apps2.bvl.bund.de/DE/06_Gentechnik/03_Antragsteller/06_Institutionen_fuer_biologische_Sicherheit/01_ZKBS/03_Organismenliste/gentechnik_zkbs_organismenliste_node.html

Register der Escherichia coli-Empfängerstämme für gentechnische Arbeiten:
http://apps2.bvl.bund.de/strainwww/protected/main/strain.do

Vektorliste:
http://apps2.bvl.bund.de/vectorwww/protected/main/vector.do

Zelllinien-Datenbank:
http://apps2.bvl.bund.de/cellswww/protected/main/cell.do
Literaturverzeichnis

Gentechnische Arbeiten in gentechnischen Anlagen
Bisher sind in dieser Schriftenreihe folgende Bände erschienen:

Band 1 Fachtagung „Gentechnik für Umwelt- und Verbraucherschutz“
in Oberschleißheim am 13. Oktober 2005 (Mai 2006)

Band 2 Fachtagung Gentechnik in Oberschleißheim am 25. Oktober 2007 (Juli 2008)

Band 3 3. Fachtagung „Gentechnik für Umwelt- und Verbraucherschutz“
Fortbildungsveranstaltung in Oberschleißheim am 2. Dezember 2009 (Februar 2010)

Band 4 Überwachung von gentechnisch veränderten Lebensmitteln, Futtermitteln und Saatgut in Bayern

sowie der vorliegende Band

Band 7 Gentechnische Arbeiten in gentechnischen Anlagen (Dezember 2013)

www.lgl.bayern.de
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL)

Telefon: 09131 6808-0
Telefax: 09131 6808-2102
E-Mail: poststelle@lgl.bayern.de
Internet: www.lgl.bayern.de

<table>
<thead>
<tr>
<th>Adresse</th>
<th>Postleitzahl</th>
<th>Stadt</th>
</tr>
</thead>
<tbody>
<tr>
<td>91058 Erlangen Eggenreuther Weg 43</td>
<td>85764</td>
<td>Oberschleißheim Veteranärstraße 2</td>
</tr>
<tr>
<td>80538 München Pfarrstraße 3</td>
<td>97082</td>
<td>Würzburg Luitpoldstraße 1</td>
</tr>
<tr>
<td>91126 Schwabach Rathausgasse 4</td>
<td>90441</td>
<td>Nürnberg Schweinauer Hauptstraße 80</td>
</tr>
</tbody>
</table>